{"title":"友谊定理的数字图版本","authors":"Myungho Choi, Hojin Chu, Suh-Ryung Kim","doi":"10.1016/j.disc.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><p>The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114238"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003698/pdfft?md5=368b7d4c1379f8549152a904b901804b&pid=1-s2.0-S0012365X24003698-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A digraph version of the Friendship Theorem\",\"authors\":\"Myungho Choi, Hojin Chu, Suh-Ryung Kim\",\"doi\":\"10.1016/j.disc.2024.114238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114238\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003698/pdfft?md5=368b7d4c1379f8549152a904b901804b&pid=1-s2.0-S0012365X24003698-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003698\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003698","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Friendship Theorem states that if in a party any pair of persons has precisely one common friend, then there is always a person who is everybody's friend and the theorem has been proved by Paul Erdős, Alfréd Rényi, and Vera T. Sós in 1966. “What would happen if instead any pair of persons likes precisely one person?” While a friendship relation is symmetric, a liking relation may not be symmetric. Therefore to represent a liking relation we should use a directed graph. We call this digraph a “liking digraph”. It is easy to check that a symmetric liking digraph becomes a friendship graph if each directed cycle of length two is replaced with an edge. In this paper, we provide a digraph formulation of the Friendship Theorem which characterizes the liking digraphs. We also establish a sufficient and necessary condition for the existence of liking digraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.