Yaxin Zhou , Xin Li , Sihan Nie , Pengfei Sun , Lijing Su , Yang Gao
{"title":"基于遗传算法和相变材料 GST 的多光谱伪装超材料结构设计","authors":"Yaxin Zhou , Xin Li , Sihan Nie , Pengfei Sun , Lijing Su , Yang Gao","doi":"10.1016/j.micrna.2024.207985","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a multispectral camouflage tunable multilayer film metamaterial (TMFM) with thermal management function based on genetic algorithm (GA), which is composed of ZnS/YbF<sub>3</sub>/Ge/Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST)/Au multilayer film. Through numerical analysis, we assess its efficacy in visible-infrared compatibility camouflage and radiative heat dissipation. Within the visible light band, different structural colors can be produced by adjusting the thickness of the ZnS film. The average emissivity within the 3–5 μm and 8–14 μm infrared bands is measured at 0.04 and 0.14, respectively. The low emissivity facilitates effective thermal management. Moreover, an average emissivity of 0.52 within the 5–8 μm range is instrumental in achieving efficient radiation heat dissipation. Laser stealth capability is further enhanced, with an emissivity reaching 0.70 at 10.6 μm. Therefore, this metamaterial structure has broad application prospects in both military and civilian industrial fields.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"195 ","pages":"Article 207985"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage\",\"authors\":\"Yaxin Zhou , Xin Li , Sihan Nie , Pengfei Sun , Lijing Su , Yang Gao\",\"doi\":\"10.1016/j.micrna.2024.207985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a multispectral camouflage tunable multilayer film metamaterial (TMFM) with thermal management function based on genetic algorithm (GA), which is composed of ZnS/YbF<sub>3</sub>/Ge/Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST)/Au multilayer film. Through numerical analysis, we assess its efficacy in visible-infrared compatibility camouflage and radiative heat dissipation. Within the visible light band, different structural colors can be produced by adjusting the thickness of the ZnS film. The average emissivity within the 3–5 μm and 8–14 μm infrared bands is measured at 0.04 and 0.14, respectively. The low emissivity facilitates effective thermal management. Moreover, an average emissivity of 0.52 within the 5–8 μm range is instrumental in achieving efficient radiation heat dissipation. Laser stealth capability is further enhanced, with an emissivity reaching 0.70 at 10.6 μm. Therefore, this metamaterial structure has broad application prospects in both military and civilian industrial fields.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"195 \",\"pages\":\"Article 207985\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324002346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
This study proposes a multispectral camouflage tunable multilayer film metamaterial (TMFM) with thermal management function based on genetic algorithm (GA), which is composed of ZnS/YbF3/Ge/Ge2Sb2Te5 (GST)/Au multilayer film. Through numerical analysis, we assess its efficacy in visible-infrared compatibility camouflage and radiative heat dissipation. Within the visible light band, different structural colors can be produced by adjusting the thickness of the ZnS film. The average emissivity within the 3–5 μm and 8–14 μm infrared bands is measured at 0.04 and 0.14, respectively. The low emissivity facilitates effective thermal management. Moreover, an average emissivity of 0.52 within the 5–8 μm range is instrumental in achieving efficient radiation heat dissipation. Laser stealth capability is further enhanced, with an emissivity reaching 0.70 at 10.6 μm. Therefore, this metamaterial structure has broad application prospects in both military and civilian industrial fields.