Cu2Se/MXene(Ti3C2Tx)复合材料实现了超低导热率并增强了热电性能

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
{"title":"Cu2Se/MXene(Ti3C2Tx)复合材料实现了超低导热率并增强了热电性能","authors":"","doi":"10.1016/j.physb.2024.416528","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the significant mismatch in phonon density of states between carbon (C) and Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se, the thermal conductivity of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se can be notably enhanced by incorporating low-dimensional carbon-based materials. This study propose an innovative approach where two-dimensional MXene material Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>T<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> is introduced into Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se, creating numerous Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se/MXene heterogeneous interfaces within the matrix. These interfaces induce high-density dislocations, which enhance multi-scale phonon scattering efficiency. Consequently, they significantly reduce lattice thermal conductivity across the entire temperature range tested. Additionally, the heterogeneous interfaces facilitate energy filtration, selectively filtering out low-energy carriers and thereby optimizing the high intrinsic carrier concentration of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se to a certain extent. Finally, the total thermal conductivity of the Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se/0.4 wt% Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>T<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> sample at 795 K is markedly lower at 0.27 Wm<sup>−1</sup>K<sup>−1</sup> compared to the average level of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se materials. As a result, the <span><math><mrow><mi>Z</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></math></span> reaches 2.11, reflecting a 109% enhancement compared to pristine Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se.</p></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu2Se/MXene (Ti3C2Tx) composite achieved ultra-low thermal conductivity and enhanced thermoelectric performance\",\"authors\":\"\",\"doi\":\"10.1016/j.physb.2024.416528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the significant mismatch in phonon density of states between carbon (C) and Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se, the thermal conductivity of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se can be notably enhanced by incorporating low-dimensional carbon-based materials. This study propose an innovative approach where two-dimensional MXene material Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>T<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> is introduced into Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se, creating numerous Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se/MXene heterogeneous interfaces within the matrix. These interfaces induce high-density dislocations, which enhance multi-scale phonon scattering efficiency. Consequently, they significantly reduce lattice thermal conductivity across the entire temperature range tested. Additionally, the heterogeneous interfaces facilitate energy filtration, selectively filtering out low-energy carriers and thereby optimizing the high intrinsic carrier concentration of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se to a certain extent. Finally, the total thermal conductivity of the Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se/0.4 wt% Ti<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>T<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> sample at 795 K is markedly lower at 0.27 Wm<sup>−1</sup>K<sup>−1</sup> compared to the average level of Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se materials. As a result, the <span><math><mrow><mi>Z</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></math></span> reaches 2.11, reflecting a 109% enhancement compared to pristine Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se.</p></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092145262400869X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262400869X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

由于碳(C)和 Cu2Se 之间的声子态密度存在明显的不匹配,因此通过加入低维碳基材料可以显著提高 Cu2Se 的热导率。本研究提出了一种创新方法,即在 Cu2Se 中引入二维 MXene 材料 Ti3C2Tx,从而在基体中形成大量 Cu2Se/MXene 异质界面。这些界面会诱发高密度位错,从而提高多尺度声子散射效率。因此,在整个测试温度范围内,它们都能显著降低晶格热导率。此外,异质界面还能促进能量过滤,选择性地过滤掉低能量载流子,从而在一定程度上优化了 Cu2Se 的高固有载流子浓度。最后,与 Cu2Se 材料的平均水平相比,Cu2Se/0.4 wt% Ti3C2Tx 样品在 795 K 时的总热导率明显较低,仅为 0.27 Wm-1K-1。因此,ZTmax 达到 2.11,与原始 Cu2Se 相比提高了 109%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cu2Se/MXene (Ti3C2Tx) composite achieved ultra-low thermal conductivity and enhanced thermoelectric performance

Due to the significant mismatch in phonon density of states between carbon (C) and Cu2Se, the thermal conductivity of Cu2Se can be notably enhanced by incorporating low-dimensional carbon-based materials. This study propose an innovative approach where two-dimensional MXene material Ti3C2Tx is introduced into Cu2Se, creating numerous Cu2Se/MXene heterogeneous interfaces within the matrix. These interfaces induce high-density dislocations, which enhance multi-scale phonon scattering efficiency. Consequently, they significantly reduce lattice thermal conductivity across the entire temperature range tested. Additionally, the heterogeneous interfaces facilitate energy filtration, selectively filtering out low-energy carriers and thereby optimizing the high intrinsic carrier concentration of Cu2Se to a certain extent. Finally, the total thermal conductivity of the Cu2Se/0.4 wt% Ti3C2Tx sample at 795 K is markedly lower at 0.27 Wm−1K−1 compared to the average level of Cu2Se materials. As a result, the ZTmax reaches 2.11, reflecting a 109% enhancement compared to pristine Cu2Se.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信