Miaoxin Di, Tenglong Miao, Zhenqi Song, Suhua Chen, Ying Bai
{"title":"具有镶嵌式异质表面的 FeS2/SnS2@C 可用作坚固的钠阳极","authors":"Miaoxin Di, Tenglong Miao, Zhenqi Song, Suhua Chen, Ying Bai","doi":"10.1063/5.0226473","DOIUrl":null,"url":null,"abstract":"Sodium-ion batteries (SIBs) have been widely researched due to their abundant resource and inherent safety. However, the major challenge for further commercialization of SIBs is the absence of low-priced anode electrodes with high reversible capacity and durability. Herein, a hierarchical heterogeneous structure of FeS2/SnS2@C nanocubes with rich two-dimensional mosaic-like heterointerface and N/S co-doped carbon wrapping is constructed and synthesized, to achieve ultrahigh reversible capacity and long cycling stability as anode of SIBs. Combining x-ray photoelectron spectroscopy, ion diffusion kinetic analysis, and in situ x-ray diffraction, the exquisite hierarchical heterogeneous structure of FeS2/SnS2@C could promote charge/electrons transfer and accelerate ion diffusion kinetics. As expected, the FeS2/SnS2@C anode shows superior reversible capacity (867.5 mA h g−1 at 0.1 A g−1), good rate performance (718.9 mA h g−1 at 5.0 A g−1), and long cycle stability (738.0 mA h g−1 after 1200 cycles at 5.0 A g−1) with Na metal as counter electrode. This work proves that the effectiveness of heterojunction interfaces for promoting Na+ diffusion is highlighted by such capabilities.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FeS2/SnS2@C with mosaic-like heterointerface as robust sodium anode\",\"authors\":\"Miaoxin Di, Tenglong Miao, Zhenqi Song, Suhua Chen, Ying Bai\",\"doi\":\"10.1063/5.0226473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium-ion batteries (SIBs) have been widely researched due to their abundant resource and inherent safety. However, the major challenge for further commercialization of SIBs is the absence of low-priced anode electrodes with high reversible capacity and durability. Herein, a hierarchical heterogeneous structure of FeS2/SnS2@C nanocubes with rich two-dimensional mosaic-like heterointerface and N/S co-doped carbon wrapping is constructed and synthesized, to achieve ultrahigh reversible capacity and long cycling stability as anode of SIBs. Combining x-ray photoelectron spectroscopy, ion diffusion kinetic analysis, and in situ x-ray diffraction, the exquisite hierarchical heterogeneous structure of FeS2/SnS2@C could promote charge/electrons transfer and accelerate ion diffusion kinetics. As expected, the FeS2/SnS2@C anode shows superior reversible capacity (867.5 mA h g−1 at 0.1 A g−1), good rate performance (718.9 mA h g−1 at 5.0 A g−1), and long cycle stability (738.0 mA h g−1 after 1200 cycles at 5.0 A g−1) with Na metal as counter electrode. This work proves that the effectiveness of heterojunction interfaces for promoting Na+ diffusion is highlighted by such capabilities.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226473\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226473","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
钠离子电池(SIBs)因其丰富的资源和固有的安全性而被广泛研究。然而,钠离子电池进一步商业化所面临的主要挑战是缺乏具有高可逆容量和耐用性的低价阳极电极。本文构建并合成了具有丰富二维马赛克状异质界面的FeS2/SnS2@C纳米立方体和N/S共掺杂碳包覆的分层异质结构,以实现作为SIBs阳极的超高可逆容量和长循环稳定性。结合 X 射线光电子能谱、离子扩散动力学分析和原位 X 射线衍射,FeS2/SnS2@C 的精致分层异质结构可促进电荷/电子转移并加速离子扩散动力学。正如预期的那样,FeS2/SnS2@C 阳极在以 Na 金属为对电极的情况下,显示出卓越的可逆容量(0.1 A g-1 时为 867.5 mA h g-1)、良好的速率性能(5.0 A g-1 时为 718.9 mA h g-1)和长周期稳定性(5.0 A g-1 时循环 1200 次后为 738.0 mA h g-1)。这项工作证明,异质结界面在促进 Na+ 扩散方面的有效性突出表现在这些能力上。
FeS2/SnS2@C with mosaic-like heterointerface as robust sodium anode
Sodium-ion batteries (SIBs) have been widely researched due to their abundant resource and inherent safety. However, the major challenge for further commercialization of SIBs is the absence of low-priced anode electrodes with high reversible capacity and durability. Herein, a hierarchical heterogeneous structure of FeS2/SnS2@C nanocubes with rich two-dimensional mosaic-like heterointerface and N/S co-doped carbon wrapping is constructed and synthesized, to achieve ultrahigh reversible capacity and long cycling stability as anode of SIBs. Combining x-ray photoelectron spectroscopy, ion diffusion kinetic analysis, and in situ x-ray diffraction, the exquisite hierarchical heterogeneous structure of FeS2/SnS2@C could promote charge/electrons transfer and accelerate ion diffusion kinetics. As expected, the FeS2/SnS2@C anode shows superior reversible capacity (867.5 mA h g−1 at 0.1 A g−1), good rate performance (718.9 mA h g−1 at 5.0 A g−1), and long cycle stability (738.0 mA h g−1 after 1200 cycles at 5.0 A g−1) with Na metal as counter electrode. This work proves that the effectiveness of heterojunction interfaces for promoting Na+ diffusion is highlighted by such capabilities.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.