深度学习是数字信号处理设计的高效工具

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL
Andrey Pryamikov
{"title":"深度学习是数字信号处理设计的高效工具","authors":"Andrey Pryamikov","doi":"10.1038/s41377-024-01599-8","DOIUrl":null,"url":null,"abstract":"<p>The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"40 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning as a highly efficient tool for digital signal processing design\",\"authors\":\"Andrey Pryamikov\",\"doi\":\"10.1038/s41377-024-01599-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.</p>\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01599-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01599-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

反向传播算法是人工神经网络训练中应用最广泛的算法,可有效地应用于光纤传输系统中数字信号处理方案的开发。数字信号处理作为一种深度学习框架,可以为低复杂度、高性价比的数字信号处理设计带来一种新的高效范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning as a highly efficient tool for digital signal processing design

Deep learning as a highly efficient tool for digital signal processing design

The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信