Lennart R Koetzier,Jie Wu,Domenico Mastrodicasa,Aline Lutz,Matthew Chung,W Adam Koszek,Jayanth Pratap,Akshay S Chaudhari,Pranav Rajpurkar,Matthew P Lungren,Martin J Willemink
{"title":"生成医学成像合成数据。","authors":"Lennart R Koetzier,Jie Wu,Domenico Mastrodicasa,Aline Lutz,Matthew Chung,W Adam Koszek,Jayanth Pratap,Akshay S Chaudhari,Pranav Rajpurkar,Matthew P Lungren,Martin J Willemink","doi":"10.1148/radiol.232471","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) models for medical imaging tasks, such as classification or segmentation, require large and diverse datasets of images. However, due to privacy and ethical issues, as well as data sharing infrastructure barriers, these datasets are scarce and difficult to assemble. Synthetic medical imaging data generated by AI from existing data could address this challenge by augmenting and anonymizing real imaging data. In addition, synthetic data enable new applications, including modality translation, contrast synthesis, and professional training for radiologists. However, the use of synthetic data also poses technical and ethical challenges. These challenges include ensuring the realism and diversity of the synthesized images while keeping data unidentifiable, evaluating the performance and generalizability of models trained on synthetic data, and high computational costs. Since existing regulations are not sufficient to guarantee the safe and ethical use of synthetic images, it becomes evident that updated laws and more rigorous oversight are needed. Regulatory bodies, physicians, and AI developers should collaborate to develop, maintain, and continually refine best practices for synthetic data. This review aims to provide an overview of the current knowledge of synthetic data in medical imaging and highlights current key challenges in the field to guide future research and development.","PeriodicalId":20896,"journal":{"name":"Radiology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Synthetic Data for Medical Imaging.\",\"authors\":\"Lennart R Koetzier,Jie Wu,Domenico Mastrodicasa,Aline Lutz,Matthew Chung,W Adam Koszek,Jayanth Pratap,Akshay S Chaudhari,Pranav Rajpurkar,Matthew P Lungren,Martin J Willemink\",\"doi\":\"10.1148/radiol.232471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) models for medical imaging tasks, such as classification or segmentation, require large and diverse datasets of images. However, due to privacy and ethical issues, as well as data sharing infrastructure barriers, these datasets are scarce and difficult to assemble. Synthetic medical imaging data generated by AI from existing data could address this challenge by augmenting and anonymizing real imaging data. In addition, synthetic data enable new applications, including modality translation, contrast synthesis, and professional training for radiologists. However, the use of synthetic data also poses technical and ethical challenges. These challenges include ensuring the realism and diversity of the synthesized images while keeping data unidentifiable, evaluating the performance and generalizability of models trained on synthetic data, and high computational costs. Since existing regulations are not sufficient to guarantee the safe and ethical use of synthetic images, it becomes evident that updated laws and more rigorous oversight are needed. Regulatory bodies, physicians, and AI developers should collaborate to develop, maintain, and continually refine best practices for synthetic data. This review aims to provide an overview of the current knowledge of synthetic data in medical imaging and highlights current key challenges in the field to guide future research and development.\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.232471\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.232471","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Artificial intelligence (AI) models for medical imaging tasks, such as classification or segmentation, require large and diverse datasets of images. However, due to privacy and ethical issues, as well as data sharing infrastructure barriers, these datasets are scarce and difficult to assemble. Synthetic medical imaging data generated by AI from existing data could address this challenge by augmenting and anonymizing real imaging data. In addition, synthetic data enable new applications, including modality translation, contrast synthesis, and professional training for radiologists. However, the use of synthetic data also poses technical and ethical challenges. These challenges include ensuring the realism and diversity of the synthesized images while keeping data unidentifiable, evaluating the performance and generalizability of models trained on synthetic data, and high computational costs. Since existing regulations are not sufficient to guarantee the safe and ethical use of synthetic images, it becomes evident that updated laws and more rigorous oversight are needed. Regulatory bodies, physicians, and AI developers should collaborate to develop, maintain, and continually refine best practices for synthetic data. This review aims to provide an overview of the current knowledge of synthetic data in medical imaging and highlights current key challenges in the field to guide future research and development.
期刊介绍:
Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies.
Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.