商奇点最小模型的类群

IF 0.8 3区 数学 Q2 MATHEMATICS
Johannes Schmitt
{"title":"商奇点最小模型的类群","authors":"Johannes Schmitt","doi":"10.1112/blms.13100","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> be a finite-dimensional vector space over the complex numbers and let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>⩽</mo>\n <mo>SL</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G\\leqslant \\operatorname{SL}(V)$</annotation>\n </semantics></math> be a finite group. We describe the class group of a minimal model (i.e., <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>-factorial terminalization) of the linear quotient <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>/</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$V/G$</annotation>\n </semantics></math>. We prove that such a class group is completely controlled by the junior elements contained in <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2777-2793"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13100","citationCount":"0","resultStr":"{\"title\":\"The class group of a minimal model of a quotient singularity\",\"authors\":\"Johannes Schmitt\",\"doi\":\"10.1112/blms.13100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> be a finite-dimensional vector space over the complex numbers and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>⩽</mo>\\n <mo>SL</mo>\\n <mo>(</mo>\\n <mi>V</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G\\\\leqslant \\\\operatorname{SL}(V)$</annotation>\\n </semantics></math> be a finite group. We describe the class group of a minimal model (i.e., <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$\\\\mathbb {Q}$</annotation>\\n </semantics></math>-factorial terminalization) of the linear quotient <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>/</mo>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$V/G$</annotation>\\n </semantics></math>. We prove that such a class group is completely controlled by the junior elements contained in <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 9\",\"pages\":\"2777-2793\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13100\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 V $V$ 是复数上的有限维向量空间,让 G ⩽ SL ( V ) $G\leqslant \operatorname{SL}(V)$ 是有限群。我们将描述线性商 V / G $V/G$ 的最小模型(即 Q $\mathbb {Q}$ -因子终结)的类群。我们证明这样的类群完全由 G $G$ 中包含的初等元素控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The class group of a minimal model of a quotient singularity

The class group of a minimal model of a quotient singularity

Let V $V$ be a finite-dimensional vector space over the complex numbers and let G SL ( V ) $G\leqslant \operatorname{SL}(V)$ be a finite group. We describe the class group of a minimal model (i.e., Q $\mathbb {Q}$ -factorial terminalization) of the linear quotient V / G $V/G$ . We prove that such a class group is completely controlled by the junior elements contained in G $G$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信