Yann Y. Planton, Jiwoo Lee, Andrew T. Wittenberg, Peter J. Gleckler, Éric Guilyardi, Shayne McGregor, Michael J. McPhaden
{"title":"估计厄尔尼诺/南方涛动模拟统计的不确定性","authors":"Yann Y. Planton, Jiwoo Lee, Andrew T. Wittenberg, Peter J. Gleckler, Éric Guilyardi, Shayne McGregor, Michael J. McPhaden","doi":"10.1029/2023MS004147","DOIUrl":null,"url":null,"abstract":"<p>Large ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling-based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre-industrial control or historical runs. This suggests that pre-industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004147","citationCount":"0","resultStr":"{\"title\":\"Estimating Uncertainty in Simulated ENSO Statistics\",\"authors\":\"Yann Y. Planton, Jiwoo Lee, Andrew T. Wittenberg, Peter J. Gleckler, Éric Guilyardi, Shayne McGregor, Michael J. McPhaden\",\"doi\":\"10.1029/2023MS004147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling-based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre-industrial control or historical runs. This suggests that pre-industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004147\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004147","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Estimating Uncertainty in Simulated ENSO Statistics
Large ensembles of model simulations are frequently used to reduce the impact of internal variability when evaluating climate models and assessing climate change induced trends. However, the optimal number of ensemble members required to distinguish model biases and climate change signals from internal variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the ensemble size or simulation length required to limit sampling-based uncertainties in ENSO statistics to within a desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are generally comparable when computed using either pre-industrial control or historical runs. This suggests that pre-industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size) required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic uncertainties arising from simulated internal variability. These results may well be applicable to variables and regions beyond ENSO.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.