具有多项式对数特征的可矫正路径是直线

IF 0.8 3区 数学 Q2 MATHEMATICS
Peter K. Friz, Terry Lyons, Anna Seigal
{"title":"具有多项式对数特征的可矫正路径是直线","authors":"Peter K. Friz,&nbsp;Terry Lyons,&nbsp;Anna Seigal","doi":"10.1112/blms.13110","DOIUrl":null,"url":null,"abstract":"<p>The signature of a rectifiable path is a tensor series in the tensor algebra whose coefficients are definite iterated integrals of the path. The signature characterizes the path up to a generalized form of reparameterization. It is a classical result of Chen that the log-signature (the logarithm of the signature) is a Lie series. A Lie series is polynomial if it has finite degree. We show that the log-signature is polynomial if and only if the path is a straight line up to reparameterization. Consequently, the log-signature of a rectifiable path either has degree one or infinite support. Though our result pertains to rectifiable paths, the proof uses rough path theory, in particular that the signature characterizes a rough path up to reparameterization.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2922-2934"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rectifiable paths with polynomial log-signature are straight lines\",\"authors\":\"Peter K. Friz,&nbsp;Terry Lyons,&nbsp;Anna Seigal\",\"doi\":\"10.1112/blms.13110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The signature of a rectifiable path is a tensor series in the tensor algebra whose coefficients are definite iterated integrals of the path. The signature characterizes the path up to a generalized form of reparameterization. It is a classical result of Chen that the log-signature (the logarithm of the signature) is a Lie series. A Lie series is polynomial if it has finite degree. We show that the log-signature is polynomial if and only if the path is a straight line up to reparameterization. Consequently, the log-signature of a rectifiable path either has degree one or infinite support. Though our result pertains to rectifiable paths, the proof uses rough path theory, in particular that the signature characterizes a rough path up to reparameterization.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 9\",\"pages\":\"2922-2934\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13110\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13110","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

可矫正路径的签名是张量代数中的一个张量序列,其系数是路径的定迭代积分。该签名描述了路径的特征,直至一种广义的重参数化形式。陈的一个经典结果是对数签名(签名的对数)是一个列数列。如果一个列数列具有有限度,那么它就是多项式的。我们证明,当且仅当路径在重参数化之前是一条直线时,对数符号是多项式的。因此,可整型路径的对数符号要么有一度,要么有无限支持。尽管我们的结果与可矫正路径有关,但证明却使用了粗糙路径理论,特别是在重参数化之前,对数符号是粗糙路径的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rectifiable paths with polynomial log-signature are straight lines

The signature of a rectifiable path is a tensor series in the tensor algebra whose coefficients are definite iterated integrals of the path. The signature characterizes the path up to a generalized form of reparameterization. It is a classical result of Chen that the log-signature (the logarithm of the signature) is a Lie series. A Lie series is polynomial if it has finite degree. We show that the log-signature is polynomial if and only if the path is a straight line up to reparameterization. Consequently, the log-signature of a rectifiable path either has degree one or infinite support. Though our result pertains to rectifiable paths, the proof uses rough path theory, in particular that the signature characterizes a rough path up to reparameterization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信