几何特性 (T) 和卡兹丹投影

IF 0.8 3区 数学 Q2 MATHEMATICS
I. Vergara
{"title":"几何特性 (T) 和卡兹丹投影","authors":"I. Vergara","doi":"10.1112/blms.13111","DOIUrl":null,"url":null,"abstract":"<p>We characterise Geometric Property (T) by the existence of a certain projection in the maximal uniform Roe algebra <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mrow>\n <mi>u</mi>\n <mo>,</mo>\n <mi>max</mi>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_{u,\\max }^*(X)$</annotation>\n </semantics></math>, extending the notion of Kazhdan projection for groups to the realm of metric spaces. We also describe this projection in terms of the decomposition of the metric space into coarsely connected components.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2935-2950"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric property (T) and Kazhdan projections\",\"authors\":\"I. Vergara\",\"doi\":\"10.1112/blms.13111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterise Geometric Property (T) by the existence of a certain projection in the maximal uniform Roe algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mrow>\\n <mi>u</mi>\\n <mo>,</mo>\\n <mi>max</mi>\\n </mrow>\\n <mo>∗</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_{u,\\\\max }^*(X)$</annotation>\\n </semantics></math>, extending the notion of Kazhdan projection for groups to the realm of metric spaces. We also describe this projection in terms of the decomposition of the metric space into coarsely connected components.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 9\",\"pages\":\"2935-2950\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13111\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过在最大均匀罗厄代数 C u , max ∗ ( X ) $C_{u,\max }^*(X)$ 中存在某种投影来描述几何性质 (T),从而将群的卡兹丹投影概念扩展到公度空间领域。我们还用把度量空间分解成粗连接成分的方法来描述这种投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric property (T) and Kazhdan projections

We characterise Geometric Property (T) by the existence of a certain projection in the maximal uniform Roe algebra C u , max ( X ) $C_{u,\max }^*(X)$ , extending the notion of Kazhdan projection for groups to the realm of metric spaces. We also describe this projection in terms of the decomposition of the metric space into coarsely connected components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信