监测脑芯片和脑器官组织的电生理功能

IF 4 Q2 ENGINEERING, BIOMEDICAL
Jiyoung Song, Hoon Eui Jeong, Andrew Choi, Hong Nam Kim
{"title":"监测脑芯片和脑器官组织的电生理功能","authors":"Jiyoung Song,&nbsp;Hoon Eui Jeong,&nbsp;Andrew Choi,&nbsp;Hong Nam Kim","doi":"10.1002/anbr.202470091","DOIUrl":null,"url":null,"abstract":"<p><b>Electrophysiology Measurement</b>\n </p><p>Human avatars like brain-on-a-chip and brain organoids use human-derived cells to replicate brain physiology. This review summarizes the latest methodologies for assessing the electrophysiology of various cell types within brain-on-a-chip and brain organoid models. More details can be found in article 2400052 by Jiyoung Song, Hoon Eui Jeong, Andrew Choi, and Hong Nam Kim.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470091","citationCount":"0","resultStr":"{\"title\":\"Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids\",\"authors\":\"Jiyoung Song,&nbsp;Hoon Eui Jeong,&nbsp;Andrew Choi,&nbsp;Hong Nam Kim\",\"doi\":\"10.1002/anbr.202470091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Electrophysiology Measurement</b>\\n </p><p>Human avatars like brain-on-a-chip and brain organoids use human-derived cells to replicate brain physiology. This review summarizes the latest methodologies for assessing the electrophysiology of various cell types within brain-on-a-chip and brain organoid models. More details can be found in article 2400052 by Jiyoung Song, Hoon Eui Jeong, Andrew Choi, and Hong Nam Kim.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202470091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202470091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

电生理学测量 片上大脑和类脑器官等人类化身使用源自人类的细胞复制大脑生理学。本综述总结了评估脑芯片和类脑器官模型中各种细胞类型电生理学的最新方法。更多详情请见 Jiyoung Song、Hoon Eui Jeong、Andrew Choi 和 Hong Nam Kim 发表的文章 2400052。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids

Monitoring of Electrophysiological Functions in Brain-on-a-Chip and Brain Organoids

Electrophysiology Measurement

Human avatars like brain-on-a-chip and brain organoids use human-derived cells to replicate brain physiology. This review summarizes the latest methodologies for assessing the electrophysiology of various cell types within brain-on-a-chip and brain organoid models. More details can be found in article 2400052 by Jiyoung Song, Hoon Eui Jeong, Andrew Choi, and Hong Nam Kim.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信