流形上非线性椭圆方程反问题的刚性

IF 0.8 3区 数学 Q2 MATHEMATICS
Ali Feizmohammadi, Yavar Kian, Lauri Oksanen
{"title":"流形上非线性椭圆方程反问题的刚性","authors":"Ali Feizmohammadi,&nbsp;Yavar Kian,&nbsp;Lauri Oksanen","doi":"10.1112/blms.13102","DOIUrl":null,"url":null,"abstract":"<p>We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2802-2823"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of inverse problems for nonlinear elliptic equations on manifolds\",\"authors\":\"Ali Feizmohammadi,&nbsp;Yavar Kian,&nbsp;Lauri Oksanen\",\"doi\":\"10.1112/blms.13102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 9\",\"pages\":\"2802-2823\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13102\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的逆问题是,在知道相关的 Dirichlet 到 Neumann 映射的情况下,如何确定有边界的黎曼流形上的半线性椭圆方程中出现的系数。我们首先给出了这个问题的否定答案。由于这一障碍,我们考虑用刚性问题对逆问题进行新的表述。确切地说,我们考虑了半线性方程的 Dirichlet 到 Neumann 映射与线性方程的 Dirichlet 到 Neumann 映射重合的情况,并询问这是否意味着方程确实必须是线性的。在对所考虑的黎曼流形和半线性项做出一些假设的情况下,我们给出了这个刚性问题的肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of inverse problems for nonlinear elliptic equations on manifolds

We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信