离散时间非线性随机系统的时标分离

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Guido Carnevale;Giuseppe Notarstefano
{"title":"离散时间非线性随机系统的时标分离","authors":"Guido Carnevale;Giuseppe Notarstefano","doi":"10.1109/LCSYS.2024.3451792","DOIUrl":null,"url":null,"abstract":"In this letter, we present a timescale separation result for discrete-time stochastic systems. We consider the feedback interconnection of two stochastic subsystems, referred to as fast and slow dynamics, and analyze them by combining timescale separation theory and stochastic LaSalle and Lyapunov theorems. Specifically, we separately focus on two auxiliary dynamics, named the boundary layer system (related to the fast part) and the reduced system (related to the slow part). For each of these auxiliary schemes, we identify a stochastic LaSalle testing condition and guarantee that satisfying both conditions is sufficient to prove almost sure LaSalle-type convergence of the original stochastic interconnection. Finally, we focus on stochastic optimization and exploit this new tool to prove almost sure convergence of the popular Stochastic Averaged Gradient and SAGA algorithms in a general nonconvex framework.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10659105","citationCount":"0","resultStr":"{\"title\":\"Timescale Separation for Discrete-Time Nonlinear Stochastic Systems\",\"authors\":\"Guido Carnevale;Giuseppe Notarstefano\",\"doi\":\"10.1109/LCSYS.2024.3451792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present a timescale separation result for discrete-time stochastic systems. We consider the feedback interconnection of two stochastic subsystems, referred to as fast and slow dynamics, and analyze them by combining timescale separation theory and stochastic LaSalle and Lyapunov theorems. Specifically, we separately focus on two auxiliary dynamics, named the boundary layer system (related to the fast part) and the reduced system (related to the slow part). For each of these auxiliary schemes, we identify a stochastic LaSalle testing condition and guarantee that satisfying both conditions is sufficient to prove almost sure LaSalle-type convergence of the original stochastic interconnection. Finally, we focus on stochastic optimization and exploit this new tool to prove almost sure convergence of the popular Stochastic Averaged Gradient and SAGA algorithms in a general nonconvex framework.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10659105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659105/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659105/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们提出了离散时间随机系统的时标分离结果。我们考虑了两个随机子系统(分别称为快动力学和慢动力学)的反馈互连,并结合时标分离理论和随机拉萨尔定理及李亚普诺夫定理对其进行了分析。具体来说,我们分别关注两个辅助动力学,即边界层系统(与快动力学部分相关)和还原系统(与慢动力学部分相关)。对于每一种辅助方案,我们都确定了一个随机拉萨尔测试条件,并保证满足这两个条件就足以证明原始随机互联的拉萨尔式收敛几乎是肯定的。最后,我们将重点放在随机优化上,并利用这一新工具证明了在一般非凸框架下流行的随机平均梯度算法和 SAGA 算法几乎肯定的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timescale Separation for Discrete-Time Nonlinear Stochastic Systems
In this letter, we present a timescale separation result for discrete-time stochastic systems. We consider the feedback interconnection of two stochastic subsystems, referred to as fast and slow dynamics, and analyze them by combining timescale separation theory and stochastic LaSalle and Lyapunov theorems. Specifically, we separately focus on two auxiliary dynamics, named the boundary layer system (related to the fast part) and the reduced system (related to the slow part). For each of these auxiliary schemes, we identify a stochastic LaSalle testing condition and guarantee that satisfying both conditions is sufficient to prove almost sure LaSalle-type convergence of the original stochastic interconnection. Finally, we focus on stochastic optimization and exploit this new tool to prove almost sure convergence of the popular Stochastic Averaged Gradient and SAGA algorithms in a general nonconvex framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信