用于跨类别少镜头异常检测的优先级本地匹配网络

Huilin Deng;Hongchen Luo;Wei Zhai;Yanming Guo;Yang Cao;Yu Kang
{"title":"用于跨类别少镜头异常检测的优先级本地匹配网络","authors":"Huilin Deng;Hongchen Luo;Wei Zhai;Yanming Guo;Yang Cao;Yu Kang","doi":"10.1109/TAI.2024.3385743","DOIUrl":null,"url":null,"abstract":"In response to the rapid evolution of products in industrial inspection, this article introduces the cross-category few-shot anomaly detection (C-FSAD) task, aimed at efficiently detecting anomalies in new object categories with minimal normal samples. However, the diversity of defects and significant visual distinctions among various objects hinder the identification of anomalous regions. To tackle this, we adopt a pairwise comparison between query and normal samples, establishing an intimate correlation through fine-grained correspondence. Specifically, we propose the prioritized local matching network (PLMNet), emphasizing local analysis of correlation, which includes three primary components: 1) Local perception network refines the initial matches through bidirectional local analysis; 2) step aggregation strategy employs multiple stages of local convolutional pooling to aggregate local insights; and 3) defect-sensitive Weight Learner adaptively enhances channels informative for defect structures, ensuring more discriminative representations of encoded context. Our PLMNet deepens the interpretation of correlations, from geometric cues to semantics, efficiently extracting discrepancies in feature space. Extensive experiments on two standard industrial anomaly detection benchmarks demonstrate our state-of-the-art performance in both detection and localization, with margins of 9.8% and 5.4%, respectively.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4550-4561"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritized Local Matching Network for Cross-Category Few-Shot Anomaly Detection\",\"authors\":\"Huilin Deng;Hongchen Luo;Wei Zhai;Yanming Guo;Yang Cao;Yu Kang\",\"doi\":\"10.1109/TAI.2024.3385743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the rapid evolution of products in industrial inspection, this article introduces the cross-category few-shot anomaly detection (C-FSAD) task, aimed at efficiently detecting anomalies in new object categories with minimal normal samples. However, the diversity of defects and significant visual distinctions among various objects hinder the identification of anomalous regions. To tackle this, we adopt a pairwise comparison between query and normal samples, establishing an intimate correlation through fine-grained correspondence. Specifically, we propose the prioritized local matching network (PLMNet), emphasizing local analysis of correlation, which includes three primary components: 1) Local perception network refines the initial matches through bidirectional local analysis; 2) step aggregation strategy employs multiple stages of local convolutional pooling to aggregate local insights; and 3) defect-sensitive Weight Learner adaptively enhances channels informative for defect structures, ensuring more discriminative representations of encoded context. Our PLMNet deepens the interpretation of correlations, from geometric cues to semantics, efficiently extracting discrepancies in feature space. Extensive experiments on two standard industrial anomaly detection benchmarks demonstrate our state-of-the-art performance in both detection and localization, with margins of 9.8% and 5.4%, respectively.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 9\",\"pages\":\"4550-4561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494062/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494062/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了应对工业检测中产品的快速发展,本文介绍了跨类别少镜头异常检测(C-FSAD)任务,旨在用最少的正常样本高效检测新对象类别中的异常。然而,缺陷的多样性和不同物体之间的显著视觉差异阻碍了异常区域的识别。为了解决这个问题,我们采用了查询样本和正常样本之间的配对比较,通过细粒度的对应关系建立密切的相关性。具体来说,我们提出了优先本地匹配网络(PLMNet),强调对相关性的本地分析,包括三个主要部分:1)本地感知网络通过双向本地分析完善初始匹配;2)阶跃聚合策略采用多级本地卷积池来聚合本地洞察力;3)缺陷敏感的权重学习器(Weight Learner)自适应地增强缺陷结构的信息通道,确保编码上下文的表征更具区分性。我们的 PLMNet 深化了从几何线索到语义的相关性解释,有效地提取了特征空间中的差异。在两个标准工业异常检测基准上进行的广泛实验证明了我们在检测和定位方面的一流性能,误差率分别为 9.8% 和 5.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritized Local Matching Network for Cross-Category Few-Shot Anomaly Detection
In response to the rapid evolution of products in industrial inspection, this article introduces the cross-category few-shot anomaly detection (C-FSAD) task, aimed at efficiently detecting anomalies in new object categories with minimal normal samples. However, the diversity of defects and significant visual distinctions among various objects hinder the identification of anomalous regions. To tackle this, we adopt a pairwise comparison between query and normal samples, establishing an intimate correlation through fine-grained correspondence. Specifically, we propose the prioritized local matching network (PLMNet), emphasizing local analysis of correlation, which includes three primary components: 1) Local perception network refines the initial matches through bidirectional local analysis; 2) step aggregation strategy employs multiple stages of local convolutional pooling to aggregate local insights; and 3) defect-sensitive Weight Learner adaptively enhances channels informative for defect structures, ensuring more discriminative representations of encoded context. Our PLMNet deepens the interpretation of correlations, from geometric cues to semantics, efficiently extracting discrepancies in feature space. Extensive experiments on two standard industrial anomaly detection benchmarks demonstrate our state-of-the-art performance in both detection and localization, with margins of 9.8% and 5.4%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信