利用仿生非晶涂层实现抗腐蚀和辐射冷却的新方法

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"利用仿生非晶涂层实现抗腐蚀和辐射冷却的新方法","authors":"","doi":"10.1016/j.surfcoat.2024.131338","DOIUrl":null,"url":null,"abstract":"<div><p>To address the application challenges of high-power-density electronic devices in harsh conditions, it is crucial to develop electric insulation materials that possess both corrosion resistance and excellent radiative cooling performance. In this study, inspired by the wrinkle morphology of the Camponotus ant with thermoregulation, a biomimetic amorphous coating composed of a hemispherical array was fabricated on aluminum alloy using plasma electrolytic oxidation (PEO) technology. This biomimetic microstructure is obtained by controlling the content of hexagonal boron nitride (h-BN) nanoparticles in the electrolyte, where the increase in current density at a later stage allows the transition of the porous coating to the hemispherical array. The effects of functional group vibration and rotation in combination with the hemispherical structure afford the biomimetic coating a high emissivity of 0.91 within the range of 3–14 μm, which reduces the LED temperature by 17.1 °C and achieves a cooling efficiency of 10.6 %. Meanwhile, with a resistivity of 5.15 × 10<sup>14</sup> Ω∙cm and a dielectric strength of 29.9 V/μm, the coating can prevent current leakage, consequently improving the stability and reliability of electronic packaging materials. In addition, h-BN flakes in the biomimetic coating with almost defects free act as a protective barrier to enhance the corrosion resistance of the aluminum alloy. This approach offers a time-efficient and cost-effective route for the manufacture of multifunctional coatings with potential applications in electronic packaging.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel approach to corrosion resistance and radiative cooling with biomimetic amorphous coatings\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the application challenges of high-power-density electronic devices in harsh conditions, it is crucial to develop electric insulation materials that possess both corrosion resistance and excellent radiative cooling performance. In this study, inspired by the wrinkle morphology of the Camponotus ant with thermoregulation, a biomimetic amorphous coating composed of a hemispherical array was fabricated on aluminum alloy using plasma electrolytic oxidation (PEO) technology. This biomimetic microstructure is obtained by controlling the content of hexagonal boron nitride (h-BN) nanoparticles in the electrolyte, where the increase in current density at a later stage allows the transition of the porous coating to the hemispherical array. The effects of functional group vibration and rotation in combination with the hemispherical structure afford the biomimetic coating a high emissivity of 0.91 within the range of 3–14 μm, which reduces the LED temperature by 17.1 °C and achieves a cooling efficiency of 10.6 %. Meanwhile, with a resistivity of 5.15 × 10<sup>14</sup> Ω∙cm and a dielectric strength of 29.9 V/μm, the coating can prevent current leakage, consequently improving the stability and reliability of electronic packaging materials. In addition, h-BN flakes in the biomimetic coating with almost defects free act as a protective barrier to enhance the corrosion resistance of the aluminum alloy. This approach offers a time-efficient and cost-effective route for the manufacture of multifunctional coatings with potential applications in electronic packaging.</p></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224009691\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224009691","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

为了应对高功率密度电子设备在恶劣条件下的应用挑战,开发既具有耐腐蚀性又具有优异辐射冷却性能的电绝缘材料至关重要。在这项研究中,受具有体温调节功能的 Camponotus 蚂蚁皱纹形态的启发,利用等离子电解氧化(PEO)技术在铝合金上制造了一种由半球形阵列组成的仿生物非晶涂层。这种仿生微结构是通过控制电解液中六方氮化硼(h-BN)纳米粒子的含量获得的,后期电流密度的增加可使多孔涂层过渡到半球形阵列。官能团振动和旋转效应与半球形结构相结合,使仿生涂层在 3-14 μm 范围内具有 0.91 的高发射率,从而使 LED 温度降低了 17.1 ℃,冷却效率达到 10.6%。同时,该涂层的电阻率为 5.15 × 1014 Ω∙cm,介电强度为 29.9 V/μm,可防止电流泄漏,从而提高电子封装材料的稳定性和可靠性。此外,生物仿生涂层中几乎无缺陷的 h-BN 薄片可作为保护屏障,增强铝合金的耐腐蚀性。这种方法为制造具有电子封装应用潜力的多功能涂层提供了一条省时、经济的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel approach to corrosion resistance and radiative cooling with biomimetic amorphous coatings

Novel approach to corrosion resistance and radiative cooling with biomimetic amorphous coatings

To address the application challenges of high-power-density electronic devices in harsh conditions, it is crucial to develop electric insulation materials that possess both corrosion resistance and excellent radiative cooling performance. In this study, inspired by the wrinkle morphology of the Camponotus ant with thermoregulation, a biomimetic amorphous coating composed of a hemispherical array was fabricated on aluminum alloy using plasma electrolytic oxidation (PEO) technology. This biomimetic microstructure is obtained by controlling the content of hexagonal boron nitride (h-BN) nanoparticles in the electrolyte, where the increase in current density at a later stage allows the transition of the porous coating to the hemispherical array. The effects of functional group vibration and rotation in combination with the hemispherical structure afford the biomimetic coating a high emissivity of 0.91 within the range of 3–14 μm, which reduces the LED temperature by 17.1 °C and achieves a cooling efficiency of 10.6 %. Meanwhile, with a resistivity of 5.15 × 1014 Ω∙cm and a dielectric strength of 29.9 V/μm, the coating can prevent current leakage, consequently improving the stability and reliability of electronic packaging materials. In addition, h-BN flakes in the biomimetic coating with almost defects free act as a protective barrier to enhance the corrosion resistance of the aluminum alloy. This approach offers a time-efficient and cost-effective route for the manufacture of multifunctional coatings with potential applications in electronic packaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信