Muhammad Bilal , Aman-ur-Rehman , Muhammad Ahsan Shahzad , Muhammad Sarfraz , Shahzad Mahmood
{"title":"存在混合非热非广延电子时电磁电子惠斯勒-环子模式失稳的动力学尺度诊断法","authors":"Muhammad Bilal , Aman-ur-Rehman , Muhammad Ahsan Shahzad , Muhammad Sarfraz , Shahzad Mahmood","doi":"10.1016/j.cjph.2024.08.043","DOIUrl":null,"url":null,"abstract":"<div><p>Temperature anisotropies exist in all the solar terrestrial regions and act as a source of free energy that plays a pivotal role for the destabilization of various plasma modes, one of them is the electromagnetic electron whistler-cyclotron instability. In this paper, the kinetic-scale diagnostic of parallel propagating electromagnetic electron whistler-cyclotron instability is numerically investigated in hybrid non-thermal non-extensive non-collisional magnetized plasmas. The dielectric response function (DRF) of right handed circularly polarized whistler instability (WI) is derived by the incorporation of Vlasov–Maxwell model for both super-extensive (<span><math><mrow><mi>q</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≠</mo><mn>0</mn></mrow></math></span>) and sub-extensive (<span><math><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≠</mo><mn>0</mn></mrow></math></span>) bi-Cairns–Tsallis distributed plasma (bi-CTDP) systems. The unstable solutions of WI are obtained through the exact numerical analysis of DRF to compute the oscillatory/real frequency and growth rate. The dependence of pertinent parameters, i.e., non-thermality (<span><math><mi>q</mi></math></span>), non-extensivity (<span><math><mi>α</mi></math></span>), temperature anisotropy ratio (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>) and (<span><math><mrow><mi>α</mi><mo>,</mo><mi>q</mi></mrow></math></span>)-dependent plasma beta (<span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mo>∥</mo><mi>e</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>), on the destabilization of whistler mode are examined in detail. The prevalence of hybrid non-thermal non-extensive electrons population plays a substantial role in altering the characteristics of whistler-cyclotron instability in bi-CTDP system as compared to other non-thermal/non-equilibrium plasma systems. The nature and characteristics of the instabilities and waves are substantially influenced by the shape of particle velocity distributions, particularly on kinetic scale. The hybrid non-thermal non-extensive character of electrons distribution remarkably support the instability growth. We observed the highest growth rate of WI in super-extensive bi-CTDP in contrast to other non-thermal plasma distributions. A detailed comparison of the present findings with the other models, e.g. bi-Cairns, bi-nonextensive, and bi-Maxwellian plasmas is also unveiled in the present research.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic-scale diagnostics of destabilization of electromagnetic electron whistler-cyclotron modes in the presence of hybrid non-thermal non-extensive electrons\",\"authors\":\"Muhammad Bilal , Aman-ur-Rehman , Muhammad Ahsan Shahzad , Muhammad Sarfraz , Shahzad Mahmood\",\"doi\":\"10.1016/j.cjph.2024.08.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temperature anisotropies exist in all the solar terrestrial regions and act as a source of free energy that plays a pivotal role for the destabilization of various plasma modes, one of them is the electromagnetic electron whistler-cyclotron instability. In this paper, the kinetic-scale diagnostic of parallel propagating electromagnetic electron whistler-cyclotron instability is numerically investigated in hybrid non-thermal non-extensive non-collisional magnetized plasmas. The dielectric response function (DRF) of right handed circularly polarized whistler instability (WI) is derived by the incorporation of Vlasov–Maxwell model for both super-extensive (<span><math><mrow><mi>q</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≠</mo><mn>0</mn></mrow></math></span>) and sub-extensive (<span><math><mrow><mi>q</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≠</mo><mn>0</mn></mrow></math></span>) bi-Cairns–Tsallis distributed plasma (bi-CTDP) systems. The unstable solutions of WI are obtained through the exact numerical analysis of DRF to compute the oscillatory/real frequency and growth rate. The dependence of pertinent parameters, i.e., non-thermality (<span><math><mi>q</mi></math></span>), non-extensivity (<span><math><mi>α</mi></math></span>), temperature anisotropy ratio (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>) and (<span><math><mrow><mi>α</mi><mo>,</mo><mi>q</mi></mrow></math></span>)-dependent plasma beta (<span><math><msubsup><mrow><mi>β</mi></mrow><mrow><mo>∥</mo><mi>e</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>q</mi></mrow></msubsup></math></span>), on the destabilization of whistler mode are examined in detail. The prevalence of hybrid non-thermal non-extensive electrons population plays a substantial role in altering the characteristics of whistler-cyclotron instability in bi-CTDP system as compared to other non-thermal/non-equilibrium plasma systems. The nature and characteristics of the instabilities and waves are substantially influenced by the shape of particle velocity distributions, particularly on kinetic scale. The hybrid non-thermal non-extensive character of electrons distribution remarkably support the instability growth. We observed the highest growth rate of WI in super-extensive bi-CTDP in contrast to other non-thermal plasma distributions. A detailed comparison of the present findings with the other models, e.g. bi-Cairns, bi-nonextensive, and bi-Maxwellian plasmas is also unveiled in the present research.</p></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003447\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003447","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
温度各向异性存在于所有日地区域,它是自由能的源泉,对各种等离子体模式的失稳起着关键作用,电磁电子惠斯勒-回旋不稳定性就是其中之一。本文对混合非热非扩展非碰撞磁化等离子体中平行传播的电磁电子惠斯勒-回旋不稳定性的动力学尺度诊断进行了数值研究。通过结合超广延性(q<1, α≠0)和亚广延性(q>1, α≠0)双凯恩斯-萨利斯分布式等离子体(bi-CTDP)系统的弗拉索夫-麦克斯韦模型,得出了右手圆极化惠斯勒不稳定性(WI)的介质响应函数(DRF)。通过对 DRF 进行精确数值分析,计算振荡/实际频率和增长率,得到 WI 的不稳定解。详细研究了相关参数,即非热性(q)、非膨胀性(α)、温度各向异性比(δe)和(α,q)依赖的等离子体贝塔值(β∥eα,q)对惠斯勒模式失稳的影响。与其他非热/非平衡等离子体系统相比,混合非热非广延电子群在改变 bi-CTDP 系统的惠斯勒-回旋不稳定性特征方面发挥了重要作用。不稳定性和波的性质和特征在很大程度上受粒子速度分布形状的影响,特别是在动力学尺度上。电子分布的混合非热非广延性特征显著地支持了不稳定性的增长。与其他非热等离子体分布相比,我们在超广延性双CTDP中观察到了最高的WI增长率。本研究还揭示了本发现与其他模型(如双凯恩斯、双非广延性和双麦克斯韦等离子体)的详细比较。
Kinetic-scale diagnostics of destabilization of electromagnetic electron whistler-cyclotron modes in the presence of hybrid non-thermal non-extensive electrons
Temperature anisotropies exist in all the solar terrestrial regions and act as a source of free energy that plays a pivotal role for the destabilization of various plasma modes, one of them is the electromagnetic electron whistler-cyclotron instability. In this paper, the kinetic-scale diagnostic of parallel propagating electromagnetic electron whistler-cyclotron instability is numerically investigated in hybrid non-thermal non-extensive non-collisional magnetized plasmas. The dielectric response function (DRF) of right handed circularly polarized whistler instability (WI) is derived by the incorporation of Vlasov–Maxwell model for both super-extensive (, ) and sub-extensive (, ) bi-Cairns–Tsallis distributed plasma (bi-CTDP) systems. The unstable solutions of WI are obtained through the exact numerical analysis of DRF to compute the oscillatory/real frequency and growth rate. The dependence of pertinent parameters, i.e., non-thermality (), non-extensivity (), temperature anisotropy ratio () and ()-dependent plasma beta (), on the destabilization of whistler mode are examined in detail. The prevalence of hybrid non-thermal non-extensive electrons population plays a substantial role in altering the characteristics of whistler-cyclotron instability in bi-CTDP system as compared to other non-thermal/non-equilibrium plasma systems. The nature and characteristics of the instabilities and waves are substantially influenced by the shape of particle velocity distributions, particularly on kinetic scale. The hybrid non-thermal non-extensive character of electrons distribution remarkably support the instability growth. We observed the highest growth rate of WI in super-extensive bi-CTDP in contrast to other non-thermal plasma distributions. A detailed comparison of the present findings with the other models, e.g. bi-Cairns, bi-nonextensive, and bi-Maxwellian plasmas is also unveiled in the present research.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.