{"title":"土壤改良剂在限制农用化学品沥滤方面的作用:硫酸铜和麦草畏的实验室评估","authors":"","doi":"10.1016/j.jclepro.2024.143532","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture is among the major contributors to soil and groundwater pollution, primarily through the widespread leaching of pesticides and fertilizers from crops, as well as accidental releases from point sources. Therefore, alongside restrictions on the use of highly soluble agrochemicals and enhanced application guidelines, there is a significant demand for low-impact and cost-effective solutions aimed at reducing the mobility of agrochemicals in the soils. This study evaluates the potential of soil amendments—commonly used to enhance soil structural properties, water holding capacity, and fertility—to also absorb highly soluble pesticides, thereby controlling their leaching into the subsoil. Specifically, zeolite, biochar, and milled corncob were examined in laboratory tests under static (batch tests) and dynamic (column leaching tests) conditions to assess their effectiveness in adsorbing two widely used pesticides, copper sulphate and dicamba. Batch adsorption tests were performed using the amendments as pure materials and in mixtures with sand at various application rates (1–20% by weight). The highest affinity to copper sulphate was recorded for biochar, while dicamba exhibited a higher affinity to corncob, thanks to its higher content of organic carbon. Column leaching tests, performed at an amendment application rate of 5%, confirmed the different affinity observed in batch tests among pesticides and amended soil. Less than 2% of copper sulphate leached out from biochar- and zeolite-sand columns, while a recovery of 10% and 56% was observed for the corncob-sand mixture and for pure sand, respectively. Dicamba leaching from biochar- and corncob-sand columns was halved compared to pure sand. In conclusion, the tested soil amendments resulted highly effective in reducing pesticide leaching, opening the way for their possible applications in agriculture to reduce or prevent both diffuse and punctual contamination.</p></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959652624029810/pdfft?md5=a26b9de1a2006933524d8c6eb31adb82&pid=1-s2.0-S0959652624029810-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of soil amendments in limiting the leaching of agrochemicals: Laboratory assessment for copper sulphate and dicamba\",\"authors\":\"\",\"doi\":\"10.1016/j.jclepro.2024.143532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agriculture is among the major contributors to soil and groundwater pollution, primarily through the widespread leaching of pesticides and fertilizers from crops, as well as accidental releases from point sources. Therefore, alongside restrictions on the use of highly soluble agrochemicals and enhanced application guidelines, there is a significant demand for low-impact and cost-effective solutions aimed at reducing the mobility of agrochemicals in the soils. This study evaluates the potential of soil amendments—commonly used to enhance soil structural properties, water holding capacity, and fertility—to also absorb highly soluble pesticides, thereby controlling their leaching into the subsoil. Specifically, zeolite, biochar, and milled corncob were examined in laboratory tests under static (batch tests) and dynamic (column leaching tests) conditions to assess their effectiveness in adsorbing two widely used pesticides, copper sulphate and dicamba. Batch adsorption tests were performed using the amendments as pure materials and in mixtures with sand at various application rates (1–20% by weight). The highest affinity to copper sulphate was recorded for biochar, while dicamba exhibited a higher affinity to corncob, thanks to its higher content of organic carbon. Column leaching tests, performed at an amendment application rate of 5%, confirmed the different affinity observed in batch tests among pesticides and amended soil. Less than 2% of copper sulphate leached out from biochar- and zeolite-sand columns, while a recovery of 10% and 56% was observed for the corncob-sand mixture and for pure sand, respectively. Dicamba leaching from biochar- and corncob-sand columns was halved compared to pure sand. In conclusion, the tested soil amendments resulted highly effective in reducing pesticide leaching, opening the way for their possible applications in agriculture to reduce or prevent both diffuse and punctual contamination.</p></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959652624029810/pdfft?md5=a26b9de1a2006933524d8c6eb31adb82&pid=1-s2.0-S0959652624029810-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652624029810\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624029810","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The role of soil amendments in limiting the leaching of agrochemicals: Laboratory assessment for copper sulphate and dicamba
Agriculture is among the major contributors to soil and groundwater pollution, primarily through the widespread leaching of pesticides and fertilizers from crops, as well as accidental releases from point sources. Therefore, alongside restrictions on the use of highly soluble agrochemicals and enhanced application guidelines, there is a significant demand for low-impact and cost-effective solutions aimed at reducing the mobility of agrochemicals in the soils. This study evaluates the potential of soil amendments—commonly used to enhance soil structural properties, water holding capacity, and fertility—to also absorb highly soluble pesticides, thereby controlling their leaching into the subsoil. Specifically, zeolite, biochar, and milled corncob were examined in laboratory tests under static (batch tests) and dynamic (column leaching tests) conditions to assess their effectiveness in adsorbing two widely used pesticides, copper sulphate and dicamba. Batch adsorption tests were performed using the amendments as pure materials and in mixtures with sand at various application rates (1–20% by weight). The highest affinity to copper sulphate was recorded for biochar, while dicamba exhibited a higher affinity to corncob, thanks to its higher content of organic carbon. Column leaching tests, performed at an amendment application rate of 5%, confirmed the different affinity observed in batch tests among pesticides and amended soil. Less than 2% of copper sulphate leached out from biochar- and zeolite-sand columns, while a recovery of 10% and 56% was observed for the corncob-sand mixture and for pure sand, respectively. Dicamba leaching from biochar- and corncob-sand columns was halved compared to pure sand. In conclusion, the tested soil amendments resulted highly effective in reducing pesticide leaching, opening the way for their possible applications in agriculture to reduce or prevent both diffuse and punctual contamination.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.