{"title":"苯并噻唑是切入点抗癌药物的理想支架:探索药物设计、结构-活性关系和对接研究","authors":"","doi":"10.1016/j.ejmech.2024.116831","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is a major societal, public health, and economic burden in the 21st century, with 9.7 million deaths in 2022 (9.96 million in 2020) and 20 million new cancer cases (19.6 million in 2020). Considering the increasing number of cancer cases and deaths, heterocyclic compounds always paved the gold mine for the development of potential anticancer drugs as these compounds have unique flexibility and dynamic cores. Benzothiazoles and their derivatives have potential anticancer properties, making them a desirable scaffold among different heterocycles. Title structures are a class of chemicals that may bind to various receptors with high affinity, particularly those engaged in oncogenic processes. The use of these compounds allows medicinal chemists to rapidly produce anticancer treatments across a large range of targets over an extended length of time. The current study presents a thorough success story of benzothiazole derivatives as anticancer agents. It discusses the current state of cancer, the profile of benzothiazole-based derivatives synthetic pathways, and its relevance as an anticancer agent on several oncogenic pathways. The structure-activity relationship was also added to offer insight into the connection of biological data with structure and the rational design of more active drugs.</p></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzothiazole a privileged scaffold for Cutting-Edges anticancer agents: Exploring drug design, structure-activity relationship, and docking studies\",\"authors\":\"\",\"doi\":\"10.1016/j.ejmech.2024.116831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is a major societal, public health, and economic burden in the 21st century, with 9.7 million deaths in 2022 (9.96 million in 2020) and 20 million new cancer cases (19.6 million in 2020). Considering the increasing number of cancer cases and deaths, heterocyclic compounds always paved the gold mine for the development of potential anticancer drugs as these compounds have unique flexibility and dynamic cores. Benzothiazoles and their derivatives have potential anticancer properties, making them a desirable scaffold among different heterocycles. Title structures are a class of chemicals that may bind to various receptors with high affinity, particularly those engaged in oncogenic processes. The use of these compounds allows medicinal chemists to rapidly produce anticancer treatments across a large range of targets over an extended length of time. The current study presents a thorough success story of benzothiazole derivatives as anticancer agents. It discusses the current state of cancer, the profile of benzothiazole-based derivatives synthetic pathways, and its relevance as an anticancer agent on several oncogenic pathways. The structure-activity relationship was also added to offer insight into the connection of biological data with structure and the rational design of more active drugs.</p></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424007128\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424007128","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Benzothiazole a privileged scaffold for Cutting-Edges anticancer agents: Exploring drug design, structure-activity relationship, and docking studies
Cancer is a major societal, public health, and economic burden in the 21st century, with 9.7 million deaths in 2022 (9.96 million in 2020) and 20 million new cancer cases (19.6 million in 2020). Considering the increasing number of cancer cases and deaths, heterocyclic compounds always paved the gold mine for the development of potential anticancer drugs as these compounds have unique flexibility and dynamic cores. Benzothiazoles and their derivatives have potential anticancer properties, making them a desirable scaffold among different heterocycles. Title structures are a class of chemicals that may bind to various receptors with high affinity, particularly those engaged in oncogenic processes. The use of these compounds allows medicinal chemists to rapidly produce anticancer treatments across a large range of targets over an extended length of time. The current study presents a thorough success story of benzothiazole derivatives as anticancer agents. It discusses the current state of cancer, the profile of benzothiazole-based derivatives synthetic pathways, and its relevance as an anticancer agent on several oncogenic pathways. The structure-activity relationship was also added to offer insight into the connection of biological data with structure and the rational design of more active drugs.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.