Abubakar Isah , Mohamed Mahmoud , Arshad Raza , Mobeen Murtaza , Muhammad Arif , Muhammad Shahzad Kamal
{"title":"富含无水石膏的岩石中二氧化碳与盐水的相互作用:对碳矿化和地质储存的影响","authors":"Abubakar Isah , Mohamed Mahmoud , Arshad Raza , Mobeen Murtaza , Muhammad Arif , Muhammad Shahzad Kamal","doi":"10.1016/j.ijggc.2024.104202","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of subsurface geologic media for carbon capture and storage through mineralization has been recognized as a reliable approach. However, less attention has been given to anhydrite rock type for CO<sub>2</sub> mineralization and storage. Anhydrite-rich rock formations, commonly found in various geological settings, have the potential to serve as natural carbon sinks through the mineralization of CO<sub>2</sub>. Therefore, this study aims to investigate the mechanisms and potential of anhydrite-CO<sub>2</sub>-brine interactions for carbon storage. The experimental approach involved exposing anhydrite-rich rock to supercritical CO<sub>2</sub>-brine environments under varying conditions of fluid composition. Mineral transformation of an outcrop anhydrite-rich rock sample in static reactor under subsurface conditions of elevated temperature (60 °C) and pressure (104 bar), in the absence and the presence of SrCl<sub>2</sub> was conduct for a one-month period. Mineralogical and geochemical analyses, including, solution analyses, X-ray fluorescence, X-ray diffraction, micro-computed tomography, and mechanical properties were conducted to examine the changes in the composition and rock structure resulting from the interactions. The experimental reactions revealed that anhydrite undergoes mineral transformation upon exposure to supercritical CO<sub>2</sub>-saturated brine to form stable minerals including calcite, dolomite, magnesite, and strontianite, which contributes to the potential for long-term storage of CO<sub>2</sub> in the subsurface geologic media. The efficiency and extent of carbon mineralization were found to be influenced by brine composition. These findings contribute to the understanding of the potential of these formations for carbon storage, opening avenues for further research and the development of effective carbon capture and storage strategies.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"137 ","pages":"Article 104202"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2-brine interactions in anhydrite-rich rock: Implications for carbon mineralization and geo-storage\",\"authors\":\"Abubakar Isah , Mohamed Mahmoud , Arshad Raza , Mobeen Murtaza , Muhammad Arif , Muhammad Shahzad Kamal\",\"doi\":\"10.1016/j.ijggc.2024.104202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of subsurface geologic media for carbon capture and storage through mineralization has been recognized as a reliable approach. However, less attention has been given to anhydrite rock type for CO<sub>2</sub> mineralization and storage. Anhydrite-rich rock formations, commonly found in various geological settings, have the potential to serve as natural carbon sinks through the mineralization of CO<sub>2</sub>. Therefore, this study aims to investigate the mechanisms and potential of anhydrite-CO<sub>2</sub>-brine interactions for carbon storage. The experimental approach involved exposing anhydrite-rich rock to supercritical CO<sub>2</sub>-brine environments under varying conditions of fluid composition. Mineral transformation of an outcrop anhydrite-rich rock sample in static reactor under subsurface conditions of elevated temperature (60 °C) and pressure (104 bar), in the absence and the presence of SrCl<sub>2</sub> was conduct for a one-month period. Mineralogical and geochemical analyses, including, solution analyses, X-ray fluorescence, X-ray diffraction, micro-computed tomography, and mechanical properties were conducted to examine the changes in the composition and rock structure resulting from the interactions. The experimental reactions revealed that anhydrite undergoes mineral transformation upon exposure to supercritical CO<sub>2</sub>-saturated brine to form stable minerals including calcite, dolomite, magnesite, and strontianite, which contributes to the potential for long-term storage of CO<sub>2</sub> in the subsurface geologic media. The efficiency and extent of carbon mineralization were found to be influenced by brine composition. These findings contribute to the understanding of the potential of these formations for carbon storage, opening avenues for further research and the development of effective carbon capture and storage strategies.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"137 \",\"pages\":\"Article 104202\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001452\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001452","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
CO2-brine interactions in anhydrite-rich rock: Implications for carbon mineralization and geo-storage
The utilization of subsurface geologic media for carbon capture and storage through mineralization has been recognized as a reliable approach. However, less attention has been given to anhydrite rock type for CO2 mineralization and storage. Anhydrite-rich rock formations, commonly found in various geological settings, have the potential to serve as natural carbon sinks through the mineralization of CO2. Therefore, this study aims to investigate the mechanisms and potential of anhydrite-CO2-brine interactions for carbon storage. The experimental approach involved exposing anhydrite-rich rock to supercritical CO2-brine environments under varying conditions of fluid composition. Mineral transformation of an outcrop anhydrite-rich rock sample in static reactor under subsurface conditions of elevated temperature (60 °C) and pressure (104 bar), in the absence and the presence of SrCl2 was conduct for a one-month period. Mineralogical and geochemical analyses, including, solution analyses, X-ray fluorescence, X-ray diffraction, micro-computed tomography, and mechanical properties were conducted to examine the changes in the composition and rock structure resulting from the interactions. The experimental reactions revealed that anhydrite undergoes mineral transformation upon exposure to supercritical CO2-saturated brine to form stable minerals including calcite, dolomite, magnesite, and strontianite, which contributes to the potential for long-term storage of CO2 in the subsurface geologic media. The efficiency and extent of carbon mineralization were found to be influenced by brine composition. These findings contribute to the understanding of the potential of these formations for carbon storage, opening avenues for further research and the development of effective carbon capture and storage strategies.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.