{"title":"在经典中心差分方案中加入新颖的时间子步程序,以推导复平面内的四阶方法","authors":"","doi":"10.1016/j.compstruc.2024.107514","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with the development of new fourth-order accurate explicit time integration methods for the solution of wave propagation problems discretized by the finite element method. These novel schemes are derived from the well-known Central Difference time integration method through a proposed time substep procedure formed by either two or three complex substeps. The proposed formulation follows a different approach of standard time integration methods in the sense that results in the time domain are complex numbers, and advantages of such a distinct feature and its relation to the error are presented and discussed. A numerical analysis reveals that the proposed formulation not only enhances the stability but also increases the accuracy when compared to the classical Central Difference method; besides, the computer implementation is very straightforward. Finally, numerical examples are presented and the results are compared with the corresponding ones from other fourth-order methods in order to demonstrate the effectiveness, robustness and potentialities of the proposed formulation.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel time substep procedure into the classical central difference scheme to derive fourth-order methods in the complex plane\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruc.2024.107514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work is concerned with the development of new fourth-order accurate explicit time integration methods for the solution of wave propagation problems discretized by the finite element method. These novel schemes are derived from the well-known Central Difference time integration method through a proposed time substep procedure formed by either two or three complex substeps. The proposed formulation follows a different approach of standard time integration methods in the sense that results in the time domain are complex numbers, and advantages of such a distinct feature and its relation to the error are presented and discussed. A numerical analysis reveals that the proposed formulation not only enhances the stability but also increases the accuracy when compared to the classical Central Difference method; besides, the computer implementation is very straightforward. Finally, numerical examples are presented and the results are compared with the corresponding ones from other fourth-order methods in order to demonstrate the effectiveness, robustness and potentialities of the proposed formulation.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002438\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002438","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel time substep procedure into the classical central difference scheme to derive fourth-order methods in the complex plane
This work is concerned with the development of new fourth-order accurate explicit time integration methods for the solution of wave propagation problems discretized by the finite element method. These novel schemes are derived from the well-known Central Difference time integration method through a proposed time substep procedure formed by either two or three complex substeps. The proposed formulation follows a different approach of standard time integration methods in the sense that results in the time domain are complex numbers, and advantages of such a distinct feature and its relation to the error are presented and discussed. A numerical analysis reveals that the proposed formulation not only enhances the stability but also increases the accuracy when compared to the classical Central Difference method; besides, the computer implementation is very straightforward. Finally, numerical examples are presented and the results are compared with the corresponding ones from other fourth-order methods in order to demonstrate the effectiveness, robustness and potentialities of the proposed formulation.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.