内质网-线粒体相遇结构调控禾谷镰刀菌的线粒体形态、DON 生物合成和毒素组形成

IF 6.1 1区 生物学 Q1 MICROBIOLOGY
{"title":"内质网-线粒体相遇结构调控禾谷镰刀菌的线粒体形态、DON 生物合成和毒素组形成","authors":"","doi":"10.1016/j.micres.2024.127892","DOIUrl":null,"url":null,"abstract":"<div><p>The endoplasmic reticulum-mitochondrial encounter structure (ERMES) complex is known to play crucial roles in various cellular processes. However, its functional significance in filamentous fungi, particularly its impact on deoxynivalenol (DON) biosynthesis in <em>Fusarium graminearum</em>, remains inadequately understood. In this study, we aimed to investigate the regulatory function of the ERMES complex in <em>F. graminearum</em>. Our findings indicate significant changes in mitochondrial morphology of ERMES mutants, accompanied by decreased ATP content and ergosterol production. Notably, the toxisome formation in the ERMES mutant ΔFgMDM10 was defective, resulting in a substantial reduction in DON biosynthesis. This suggests a pivotal role of ERMES in toxisome formation, as evidenced by the pronounced inhibition of toxisome formation when ERMES was disrupted by boscalid. Furthermore, ERMES deficiencies were shown to diminish the virulence of <em>F. graminearum</em> towards host plants significantly. In conclusion, our results suggest ERMES is an important regulator of mitochondrial morphology, DON biosynthesis, and toxisome formation in <em>F. graminearum</em>.</p></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944501324002933/pdfft?md5=47dc1cf725902f89c167c2c6bdd688eb&pid=1-s2.0-S0944501324002933-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Endoplasmic reticulum-mitochondrial encounter structure regulates the mitochondrial morphology, DON biosynthesis and toxisome formation in Fusarium graminearum\",\"authors\":\"\",\"doi\":\"10.1016/j.micres.2024.127892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The endoplasmic reticulum-mitochondrial encounter structure (ERMES) complex is known to play crucial roles in various cellular processes. However, its functional significance in filamentous fungi, particularly its impact on deoxynivalenol (DON) biosynthesis in <em>Fusarium graminearum</em>, remains inadequately understood. In this study, we aimed to investigate the regulatory function of the ERMES complex in <em>F. graminearum</em>. Our findings indicate significant changes in mitochondrial morphology of ERMES mutants, accompanied by decreased ATP content and ergosterol production. Notably, the toxisome formation in the ERMES mutant ΔFgMDM10 was defective, resulting in a substantial reduction in DON biosynthesis. This suggests a pivotal role of ERMES in toxisome formation, as evidenced by the pronounced inhibition of toxisome formation when ERMES was disrupted by boscalid. Furthermore, ERMES deficiencies were shown to diminish the virulence of <em>F. graminearum</em> towards host plants significantly. In conclusion, our results suggest ERMES is an important regulator of mitochondrial morphology, DON biosynthesis, and toxisome formation in <em>F. graminearum</em>.</p></div>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0944501324002933/pdfft?md5=47dc1cf725902f89c167c2c6bdd688eb&pid=1-s2.0-S0944501324002933-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944501324002933\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501324002933","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,内质网-线粒体相遇结构(ERMES)复合物在各种细胞过程中发挥着至关重要的作用。然而,人们对它在丝状真菌中的功能意义,特别是它对禾谷镰刀菌中脱氧雪腐镰刀菌醇(DON)生物合成的影响,仍然缺乏足够的了解。在本研究中,我们旨在研究ERMES复合体在禾谷镰刀菌中的调控功能。我们的研究结果表明,ERMES 突变体的线粒体形态发生了显著变化,同时 ATP 含量和麦角甾醇产量也有所下降。值得注意的是,ERMES 突变体 ΔFgMDM10 的毒素体形成存在缺陷,导致 DON 生物合成大幅减少。这表明ERMES在毒素体形成过程中起着关键作用,当ERMES被boscalid破坏时,毒素体的形成受到明显抑制就是证明。此外,ERMES 的缺失还能显著降低禾本科镰刀菌对寄主植物的毒力。总之,我们的研究结果表明,ERMES 是禾谷镰孢线粒体形态、DON 生物合成和毒素体形成的重要调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endoplasmic reticulum-mitochondrial encounter structure regulates the mitochondrial morphology, DON biosynthesis and toxisome formation in Fusarium graminearum

The endoplasmic reticulum-mitochondrial encounter structure (ERMES) complex is known to play crucial roles in various cellular processes. However, its functional significance in filamentous fungi, particularly its impact on deoxynivalenol (DON) biosynthesis in Fusarium graminearum, remains inadequately understood. In this study, we aimed to investigate the regulatory function of the ERMES complex in F. graminearum. Our findings indicate significant changes in mitochondrial morphology of ERMES mutants, accompanied by decreased ATP content and ergosterol production. Notably, the toxisome formation in the ERMES mutant ΔFgMDM10 was defective, resulting in a substantial reduction in DON biosynthesis. This suggests a pivotal role of ERMES in toxisome formation, as evidenced by the pronounced inhibition of toxisome formation when ERMES was disrupted by boscalid. Furthermore, ERMES deficiencies were shown to diminish the virulence of F. graminearum towards host plants significantly. In conclusion, our results suggest ERMES is an important regulator of mitochondrial morphology, DON biosynthesis, and toxisome formation in F. graminearum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信