Luuk Leemans , Eden Magaña-Gallegos , Marieke M. van Katwijk , Leon P.M. Lamers , Alfons J.P. Smolders , Tjeerd J. Bouma , Marjolijn J.A. Christianen , Brigitta I. van Tussenbroek
{"title":"马尾藻的铁协同限制","authors":"Luuk Leemans , Eden Magaña-Gallegos , Marieke M. van Katwijk , Leon P.M. Lamers , Alfons J.P. Smolders , Tjeerd J. Bouma , Marjolijn J.A. Christianen , Brigitta I. van Tussenbroek","doi":"10.1016/j.aquabot.2024.103807","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, global distribution of holopelagic <em>Sargassum</em> spp. (sargassum) has extended from the subtropical Sargasso Sea and Gulf of Mexico into the tropical Atlantic. Climate and current patterns drive seasonal and year-to-year fluctuations of biomass in the ocean, but the underlying drivers of sargassum growth are poorly understood. Previous experimental studies showed that nitrogen (N) and phosphorus (P) can be limiting to sargassum. However, iron (Fe) also limits primary production in large parts of the ocean. We therefore (1) conducted a mesocosm experiment studying the effects of N+P and Fe addition on the growth rate and nutrient content of <em>Sargassum fluitans</em>, and (2) compiled literature on Fe tissue levels in sargassum throughout its distribution area. The Fe levels in collected experimental specimens (Mexican Caribbean) were like those previously reported near coastlines with low terrestrial nutrient runoff, and in the open ocean. The addition of Fe greatly boosted growth, averaging 0.13 doublings day<sup>−1</sup>, 40 % faster than our controls, and maximum growth rate (doubling biomass in 5½d) was 46 % above previously reported maximal value. While oceanic Fe is relatively abundant in the tropical North Atlantic during rain episodes in the summers due to Saharan dust deposition, its availability is likely more limiting during other parts of the year, particularly in the western Caribbean. However, the true limiting potential of Fe depends on many factors. Our study suggests Fe co-limitation might occur widely and urges to include Fe availability in future sargassum forecasting models.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"196 ","pages":"Article 103807"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304377024000597/pdfft?md5=663dca8de14bd0781e52c21a316a6f5e&pid=1-s2.0-S0304377024000597-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Iron co-limitation of Sargassum fluitans\",\"authors\":\"Luuk Leemans , Eden Magaña-Gallegos , Marieke M. van Katwijk , Leon P.M. Lamers , Alfons J.P. Smolders , Tjeerd J. Bouma , Marjolijn J.A. Christianen , Brigitta I. van Tussenbroek\",\"doi\":\"10.1016/j.aquabot.2024.103807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, global distribution of holopelagic <em>Sargassum</em> spp. (sargassum) has extended from the subtropical Sargasso Sea and Gulf of Mexico into the tropical Atlantic. Climate and current patterns drive seasonal and year-to-year fluctuations of biomass in the ocean, but the underlying drivers of sargassum growth are poorly understood. Previous experimental studies showed that nitrogen (N) and phosphorus (P) can be limiting to sargassum. However, iron (Fe) also limits primary production in large parts of the ocean. We therefore (1) conducted a mesocosm experiment studying the effects of N+P and Fe addition on the growth rate and nutrient content of <em>Sargassum fluitans</em>, and (2) compiled literature on Fe tissue levels in sargassum throughout its distribution area. The Fe levels in collected experimental specimens (Mexican Caribbean) were like those previously reported near coastlines with low terrestrial nutrient runoff, and in the open ocean. The addition of Fe greatly boosted growth, averaging 0.13 doublings day<sup>−1</sup>, 40 % faster than our controls, and maximum growth rate (doubling biomass in 5½d) was 46 % above previously reported maximal value. While oceanic Fe is relatively abundant in the tropical North Atlantic during rain episodes in the summers due to Saharan dust deposition, its availability is likely more limiting during other parts of the year, particularly in the western Caribbean. However, the true limiting potential of Fe depends on many factors. Our study suggests Fe co-limitation might occur widely and urges to include Fe availability in future sargassum forecasting models.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"196 \",\"pages\":\"Article 103807\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000597/pdfft?md5=663dca8de14bd0781e52c21a316a6f5e&pid=1-s2.0-S0304377024000597-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000597\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000597","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
In recent years, global distribution of holopelagic Sargassum spp. (sargassum) has extended from the subtropical Sargasso Sea and Gulf of Mexico into the tropical Atlantic. Climate and current patterns drive seasonal and year-to-year fluctuations of biomass in the ocean, but the underlying drivers of sargassum growth are poorly understood. Previous experimental studies showed that nitrogen (N) and phosphorus (P) can be limiting to sargassum. However, iron (Fe) also limits primary production in large parts of the ocean. We therefore (1) conducted a mesocosm experiment studying the effects of N+P and Fe addition on the growth rate and nutrient content of Sargassum fluitans, and (2) compiled literature on Fe tissue levels in sargassum throughout its distribution area. The Fe levels in collected experimental specimens (Mexican Caribbean) were like those previously reported near coastlines with low terrestrial nutrient runoff, and in the open ocean. The addition of Fe greatly boosted growth, averaging 0.13 doublings day−1, 40 % faster than our controls, and maximum growth rate (doubling biomass in 5½d) was 46 % above previously reported maximal value. While oceanic Fe is relatively abundant in the tropical North Atlantic during rain episodes in the summers due to Saharan dust deposition, its availability is likely more limiting during other parts of the year, particularly in the western Caribbean. However, the true limiting potential of Fe depends on many factors. Our study suggests Fe co-limitation might occur widely and urges to include Fe availability in future sargassum forecasting models.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.