Juliana Franco Lima , Leandro Farina , Pedro Veras Guimarães , Ana Flávia Caetano Bastos , Pedro de Souza Pereira , Mauro Michelena Andrade
{"title":"浅水水深对 SWASH 模拟的冲刷和冲浪区的影响","authors":"Juliana Franco Lima , Leandro Farina , Pedro Veras Guimarães , Ana Flávia Caetano Bastos , Pedro de Souza Pereira , Mauro Michelena Andrade","doi":"10.1016/j.ocemod.2024.102440","DOIUrl":null,"url":null,"abstract":"<div><p>Submerged topography in shallow waters is fundamental in the propagation and dissipation of ocean waves in the surf and swash zones. However, obtaining accurate bathymetric data in this region is challenging due to the high temporal and spatial environmental variability. The bottom boundary condition can directly affect the accuracy of numerical models used for shallow water simulations. In this study, the performance of the SWASH numerical model in describing wave runup in the swash zone is assessed using different bathymetric boundary conditions. The first method involves using data measured in the surf zone obtained by a Unmanned Aerial Vehicle (UAV), and analyzing it using the cBathy algorithm. The second method utilizes a regular bathymetric mesh generated from Dean’s equilibrium profile combined with beach topography data. The third method relies exclusively on interpolation methods using data from deep waters and beach profiles. This interpolation approach is the most used among SWASH users when detailed or updated surf zone bathymetry is unavailable. Based on the numerical simulations performed, not incorporating data from the surf zone resulted in a 4% increase in the runup estimated and approximately a 2% difference in identifying the swash zone position. The method to obtain bathymetry through the cBathy algorithm, used in this article, is cost-effective and can be used to reduce uncertainties in surf zone numerical simulations, induced by the lack of knowledge about the bottom conditions.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102440"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of shallow water bathymetry on swash and surf zone modeled by SWASH\",\"authors\":\"Juliana Franco Lima , Leandro Farina , Pedro Veras Guimarães , Ana Flávia Caetano Bastos , Pedro de Souza Pereira , Mauro Michelena Andrade\",\"doi\":\"10.1016/j.ocemod.2024.102440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Submerged topography in shallow waters is fundamental in the propagation and dissipation of ocean waves in the surf and swash zones. However, obtaining accurate bathymetric data in this region is challenging due to the high temporal and spatial environmental variability. The bottom boundary condition can directly affect the accuracy of numerical models used for shallow water simulations. In this study, the performance of the SWASH numerical model in describing wave runup in the swash zone is assessed using different bathymetric boundary conditions. The first method involves using data measured in the surf zone obtained by a Unmanned Aerial Vehicle (UAV), and analyzing it using the cBathy algorithm. The second method utilizes a regular bathymetric mesh generated from Dean’s equilibrium profile combined with beach topography data. The third method relies exclusively on interpolation methods using data from deep waters and beach profiles. This interpolation approach is the most used among SWASH users when detailed or updated surf zone bathymetry is unavailable. Based on the numerical simulations performed, not incorporating data from the surf zone resulted in a 4% increase in the runup estimated and approximately a 2% difference in identifying the swash zone position. The method to obtain bathymetry through the cBathy algorithm, used in this article, is cost-effective and can be used to reduce uncertainties in surf zone numerical simulations, induced by the lack of knowledge about the bottom conditions.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"192 \",\"pages\":\"Article 102440\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001276\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001276","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The effect of shallow water bathymetry on swash and surf zone modeled by SWASH
Submerged topography in shallow waters is fundamental in the propagation and dissipation of ocean waves in the surf and swash zones. However, obtaining accurate bathymetric data in this region is challenging due to the high temporal and spatial environmental variability. The bottom boundary condition can directly affect the accuracy of numerical models used for shallow water simulations. In this study, the performance of the SWASH numerical model in describing wave runup in the swash zone is assessed using different bathymetric boundary conditions. The first method involves using data measured in the surf zone obtained by a Unmanned Aerial Vehicle (UAV), and analyzing it using the cBathy algorithm. The second method utilizes a regular bathymetric mesh generated from Dean’s equilibrium profile combined with beach topography data. The third method relies exclusively on interpolation methods using data from deep waters and beach profiles. This interpolation approach is the most used among SWASH users when detailed or updated surf zone bathymetry is unavailable. Based on the numerical simulations performed, not incorporating data from the surf zone resulted in a 4% increase in the runup estimated and approximately a 2% difference in identifying the swash zone position. The method to obtain bathymetry through the cBathy algorithm, used in this article, is cost-effective and can be used to reduce uncertainties in surf zone numerical simulations, induced by the lack of knowledge about the bottom conditions.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.