{"title":"从马瑟理论的角度看一阶均值场博弈的时间周期解","authors":"Panrui Ni","doi":"10.1016/j.jde.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time periodic solutions of first order mean field games from the perspective of Mather theory\",\"authors\":\"Panrui Ni\",\"doi\":\"10.1016/j.jde.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005783\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005783","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Time periodic solutions of first order mean field games from the perspective of Mather theory
In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics