从马瑟理论的角度看一阶均值场博弈的时间周期解

IF 2.4 2区 数学 Q1 MATHEMATICS
Panrui Ni
{"title":"从马瑟理论的角度看一阶均值场博弈的时间周期解","authors":"Panrui Ni","doi":"10.1016/j.jde.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time periodic solutions of first order mean field games from the perspective of Mather theory\",\"authors\":\"Panrui Ni\",\"doi\":\"10.1016/j.jde.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005783\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005783","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一阶均值场博弈非三维时间周期解的存在性。假设存在一个包含在马瑟集合中的非三维周期轨道。整个系统是自治的,具有单调耦合项。此外,还考虑了一阶均值场博弈解向时间周期解的大时间收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time periodic solutions of first order mean field games from the perspective of Mather theory

In this paper, the existence of non-trivial time periodic solutions of first order mean field games is proved. It is assumed that there is a non-trivial periodic orbit contained in the Mather set. The whole system is autonomous with a monotonic coupling term. Moreover, the large time convergence of solutions of first order mean field games to time periodic solutions is also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信