S. Deepthi , Y.S. Vidya , H.C. Manjunatha , K.N. Sridhar , S. Manjunatha , R. Munirathnam , M. Shivanna , Suman kumar , T. Ganesh
{"title":"掺杂镍的血晶石纳米粒子的绿色光致发光、超级电容器和细胞毒性特性","authors":"S. Deepthi , Y.S. Vidya , H.C. Manjunatha , K.N. Sridhar , S. Manjunatha , R. Munirathnam , M. Shivanna , Suman kumar , T. Ganesh","doi":"10.1016/j.chphi.2024.100708","DOIUrl":null,"url":null,"abstract":"<div><p>Fe<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>O<span><math><msub><mrow></mrow><mn>3</mn></msub></math></span>: Ni (1–9 mol.%) nanoparticles (NPs) were synthesized using the co-precipitation method and calcined at <span><math><mrow><mn>500</mn><mspace></mspace><msup><mrow></mrow><mo>∘</mo></msup></mrow></math></span>C for 12 h. The crystallite size, phase, crystallinity, and structural parameters were analyzed via powder X-ray diffraction. The Bragg reflections confirmed that the synthesized NPs crystallize in a pure hexagonal crystal structure with space group R-3c. Surface morphology analysis revealed agglomerated NPs of irregular sizes and shapes. Energy Dispersive X-ray Analysis confirmed the presence of Fe, O, and Ni elements, as well as the purity of the sample. Both the direct band gap energy and crystallite size decreased with increasing dopant concentration. Detailed studies were conducted on the photoluminescence and anticancer properties. The CIE coordinates indicated a color tuning from blue to green in the visible region. CIE coordinates and CCT values ranging between 2860 to 9547 k demonstrated that the synthesized nanophosphor material meets the requirements of display technology. Additionally, anticancer properties were investigated using HeLa cells and compared with the standard drug cisplatin for biomedical applications. Electrochemical investigations revealed super capacitance values ranging from 93.43 to 149.13 F/g at a scan rate of 10 mV/s with increasing Ni<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> concentration. Therefore, the synthesized Ni<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>-doped hematite NPs show great promise in display technology, the biomedical field, and as supercapacitors in energy storage devices.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100708"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002524/pdfft?md5=c5f46b2d8ad6692699b54cbfee8a6de4&pid=1-s2.0-S2667022424002524-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Green photoluminescence, supercapacitor and cytotoxic properties of nickel doped haematite nanoparticles\",\"authors\":\"S. Deepthi , Y.S. Vidya , H.C. Manjunatha , K.N. Sridhar , S. Manjunatha , R. Munirathnam , M. Shivanna , Suman kumar , T. Ganesh\",\"doi\":\"10.1016/j.chphi.2024.100708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fe<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>O<span><math><msub><mrow></mrow><mn>3</mn></msub></math></span>: Ni (1–9 mol.%) nanoparticles (NPs) were synthesized using the co-precipitation method and calcined at <span><math><mrow><mn>500</mn><mspace></mspace><msup><mrow></mrow><mo>∘</mo></msup></mrow></math></span>C for 12 h. The crystallite size, phase, crystallinity, and structural parameters were analyzed via powder X-ray diffraction. The Bragg reflections confirmed that the synthesized NPs crystallize in a pure hexagonal crystal structure with space group R-3c. Surface morphology analysis revealed agglomerated NPs of irregular sizes and shapes. Energy Dispersive X-ray Analysis confirmed the presence of Fe, O, and Ni elements, as well as the purity of the sample. Both the direct band gap energy and crystallite size decreased with increasing dopant concentration. Detailed studies were conducted on the photoluminescence and anticancer properties. The CIE coordinates indicated a color tuning from blue to green in the visible region. CIE coordinates and CCT values ranging between 2860 to 9547 k demonstrated that the synthesized nanophosphor material meets the requirements of display technology. Additionally, anticancer properties were investigated using HeLa cells and compared with the standard drug cisplatin for biomedical applications. Electrochemical investigations revealed super capacitance values ranging from 93.43 to 149.13 F/g at a scan rate of 10 mV/s with increasing Ni<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> concentration. Therefore, the synthesized Ni<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>-doped hematite NPs show great promise in display technology, the biomedical field, and as supercapacitors in energy storage devices.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"9 \",\"pages\":\"Article 100708\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002524/pdfft?md5=c5f46b2d8ad6692699b54cbfee8a6de4&pid=1-s2.0-S2667022424002524-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
Fe2O3:通过粉末 X 射线衍射分析了晶体尺寸、相、结晶度和结构参数。布拉格反射证实合成的 NPs 结晶为纯六方晶体结构,空间群为 R-3c。表面形态分析表明,NPs 的大小和形状不规则,呈团聚状。能量色散 X 射线分析证实了样品中铁、氧和镍元素的存在以及纯度。直接带隙能和晶体尺寸都随着掺杂剂浓度的增加而减小。对光致发光和抗癌特性进行了详细研究。CIE 坐标显示,在可见光区域,颜色从蓝色调谐到绿色。CIE 坐标和 CCT 值在 2860 至 9547 k 之间,表明合成的纳米磷材料符合显示技术的要求。此外,还利用 HeLa 细胞研究了抗癌特性,并与生物医学应用中的标准药物顺铂进行了比较。电化学研究表明,在扫描速率为 10 mV/s 时,随着 Ni2+ 浓度的增加,超电容值从 93.43 到 149.13 F/g。因此,合成的掺杂 Ni2+ 的赤铁矿 NPs 在显示技术、生物医学领域以及作为超级电容器的储能设备方面具有广阔的前景。
Green photoluminescence, supercapacitor and cytotoxic properties of nickel doped haematite nanoparticles
FeO: Ni (1–9 mol.%) nanoparticles (NPs) were synthesized using the co-precipitation method and calcined at C for 12 h. The crystallite size, phase, crystallinity, and structural parameters were analyzed via powder X-ray diffraction. The Bragg reflections confirmed that the synthesized NPs crystallize in a pure hexagonal crystal structure with space group R-3c. Surface morphology analysis revealed agglomerated NPs of irregular sizes and shapes. Energy Dispersive X-ray Analysis confirmed the presence of Fe, O, and Ni elements, as well as the purity of the sample. Both the direct band gap energy and crystallite size decreased with increasing dopant concentration. Detailed studies were conducted on the photoluminescence and anticancer properties. The CIE coordinates indicated a color tuning from blue to green in the visible region. CIE coordinates and CCT values ranging between 2860 to 9547 k demonstrated that the synthesized nanophosphor material meets the requirements of display technology. Additionally, anticancer properties were investigated using HeLa cells and compared with the standard drug cisplatin for biomedical applications. Electrochemical investigations revealed super capacitance values ranging from 93.43 to 149.13 F/g at a scan rate of 10 mV/s with increasing Ni concentration. Therefore, the synthesized Ni-doped hematite NPs show great promise in display technology, the biomedical field, and as supercapacitors in energy storage devices.