YUAN Zhiguo , ZHANG Fan , YANG Shili , XU Xiaoying , LIU Chenyang , QIU Zhengpu , WEI Wei
{"title":"镁改性对用于甲醇合成的孔雀石锌催化性能的影响","authors":"YUAN Zhiguo , ZHANG Fan , YANG Shili , XU Xiaoying , LIU Chenyang , QIU Zhengpu , WEI Wei","doi":"10.1016/S1872-5813(24)60455-X","DOIUrl":null,"url":null,"abstract":"<div><p>The complex conditions of methanol production from coke-oven gas have brought challenges to the copper-based methanol synthesis catalyst. In this work, a series of zinc-malachite samples with different Mg contents were prepared. The zinc-malachite and calcined samples were characterized by <em>in-situ</em> X-ray diffraction (XRD), thermogravimetry-mass spectrometry (TG-MS), N<sub>2</sub> physical adsorption, H<sub>2</sub> programmed temperature reduction (H<sub>2</sub>-TPR), CO<sub>2</sub> programmed temperature desorption (CO<sub>2</sub>-TPD) and other methods. The effects of Mg addition on the structure of zinc-malachite and its catalytic performance of methanol synthesis were investigated. The results showed that the addition of Mg increased the degree of Cu substitution inside the zinc-malachite structure and promoted the formation of high temperature carbonates in the catalyst after roasting. With the increase of Mg content, the specific surface area of the calcined catalyst increased gradually, and the Cu grain size decreased simultaneously. <em>In-situ</em> XRD results showed that a small amount of Mg could effectively inhibit the growth of copper grain size during the heat treatment. The evaluation showed that the initial activity of the catalyst increased first and then decreased with Mg addition, and the activity of the Mg-doped catalyst remained at a relatively high level after heat treatment. The appropriate Mg addition is beneficial to the initial activity and thermal stability of Cu-based methanol synthesis catalyst.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1249-1255"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187258132460455X/pdf?md5=4b9a6e1d688f9e9c3a399a64629a322f&pid=1-s2.0-S187258132460455X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis\",\"authors\":\"YUAN Zhiguo , ZHANG Fan , YANG Shili , XU Xiaoying , LIU Chenyang , QIU Zhengpu , WEI Wei\",\"doi\":\"10.1016/S1872-5813(24)60455-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex conditions of methanol production from coke-oven gas have brought challenges to the copper-based methanol synthesis catalyst. In this work, a series of zinc-malachite samples with different Mg contents were prepared. The zinc-malachite and calcined samples were characterized by <em>in-situ</em> X-ray diffraction (XRD), thermogravimetry-mass spectrometry (TG-MS), N<sub>2</sub> physical adsorption, H<sub>2</sub> programmed temperature reduction (H<sub>2</sub>-TPR), CO<sub>2</sub> programmed temperature desorption (CO<sub>2</sub>-TPD) and other methods. The effects of Mg addition on the structure of zinc-malachite and its catalytic performance of methanol synthesis were investigated. The results showed that the addition of Mg increased the degree of Cu substitution inside the zinc-malachite structure and promoted the formation of high temperature carbonates in the catalyst after roasting. With the increase of Mg content, the specific surface area of the calcined catalyst increased gradually, and the Cu grain size decreased simultaneously. <em>In-situ</em> XRD results showed that a small amount of Mg could effectively inhibit the growth of copper grain size during the heat treatment. The evaluation showed that the initial activity of the catalyst increased first and then decreased with Mg addition, and the activity of the Mg-doped catalyst remained at a relatively high level after heat treatment. The appropriate Mg addition is beneficial to the initial activity and thermal stability of Cu-based methanol synthesis catalyst.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 9\",\"pages\":\"Pages 1249-1255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187258132460455X/pdf?md5=4b9a6e1d688f9e9c3a399a64629a322f&pid=1-s2.0-S187258132460455X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258132460455X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258132460455X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Effect of Mg modification on the catalytic performance of zinc malachite for methanol synthesis
The complex conditions of methanol production from coke-oven gas have brought challenges to the copper-based methanol synthesis catalyst. In this work, a series of zinc-malachite samples with different Mg contents were prepared. The zinc-malachite and calcined samples were characterized by in-situ X-ray diffraction (XRD), thermogravimetry-mass spectrometry (TG-MS), N2 physical adsorption, H2 programmed temperature reduction (H2-TPR), CO2 programmed temperature desorption (CO2-TPD) and other methods. The effects of Mg addition on the structure of zinc-malachite and its catalytic performance of methanol synthesis were investigated. The results showed that the addition of Mg increased the degree of Cu substitution inside the zinc-malachite structure and promoted the formation of high temperature carbonates in the catalyst after roasting. With the increase of Mg content, the specific surface area of the calcined catalyst increased gradually, and the Cu grain size decreased simultaneously. In-situ XRD results showed that a small amount of Mg could effectively inhibit the growth of copper grain size during the heat treatment. The evaluation showed that the initial activity of the catalyst increased first and then decreased with Mg addition, and the activity of the Mg-doped catalyst remained at a relatively high level after heat treatment. The appropriate Mg addition is beneficial to the initial activity and thermal stability of Cu-based methanol synthesis catalyst.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.