Renke Wang , Xiaobo Zhao , Chunji Xue , Haixia Chu , Yun Zhao , Qing Sun , Wanjin Zhu
{"title":"中国西北部新疆努拉赛铜矿床的流体演化:流体包裹体和 O-H-C 同位素提供的证据","authors":"Renke Wang , Xiaobo Zhao , Chunji Xue , Haixia Chu , Yun Zhao , Qing Sun , Wanjin Zhu","doi":"10.1016/j.oregeorev.2024.106220","DOIUrl":null,"url":null,"abstract":"<div><p>The Nulasai deposit is the earliest Cu mine in Xinjiang, NW China, and has been mined and smelted since the warring state period. Another striking characteristic of the deposit is the high-grade (ave. 1.34 % Cu) with bornite, chalcopyrite and chalcocite as main ore minerals. Through a field and petrographic investigation, three phases of hydrothermal evolution have been recognized at the Nulasai Cu deposit, including the stage I magnetite – quartz ± chalcopyrite ± bornite veins, the stage II calcite – barite ± chalcopyrite ± chalcocite ± pyrite ± bornite veins, and the stage III calcite – barite ± chalcopyrite ± sphalerite ± pyrite ± galena veins. Fluid inclusions of the stage I veins were captured under two-phase condition indicates that existence of both contemporaneous daughter mineral-bearing and liquid-rich fluid inclusions; they have an intermediate-high salinity (11.5 ∼ 38.5 wt% NaCl equiv) and homogenization temperature (266 ∼ 376 °C), with entrapment pressures from 47 to 167 bar (depth of approximately 0.5 to 1.7 km). The coexistence of vapor-rich and liquid-rich fluid inclusions was a defining feature of the stage II fluid inclusions, and they have an intermediate salinity (6.2 ∼ 10.7 wt.%NaCl equiv) and homogenization temperature (211 ∼ 287 °C), with entrapment pressures from 18 to 70 bar (depth of approximately 0.2 to 0.7 km). Fluid inclusions of the stage III veins were captured under two-phase condition, and intermediate-low salinity (3.2 ∼ 9.2 wt.%NaCl equiv) and homogenization temperature (155 ∼ 241 °C), with entrapment pressures of 6 to 32 bar (depth of 0.1 to 0.6 km). According to the stable isotope (O-H-C) data for the three mineralization phases, magmatic water containing organic carbon made up the majority of the early ore-forming fluids, whereas abundant meteoric water has been involved during the late stage of mineralization. Therefore, we suggest that fluid mixture between magmatic water and meteoric water may have led to simultaneous decrease of fluid temperature, salinity and their stable isotope values, and finally facilitates the Cu ore precipitation. This study emphasizes how high-grade Cu deposition in orogenic belts is initiated by fluid dilution.</p></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169136824003536/pdfft?md5=bddde4a4e8a5b850e7688236d3cc4dbe&pid=1-s2.0-S0169136824003536-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluid evolution of the Nulasai Cu deposit, Xinjiang, NW China: Evidence from fluid inclusions and O-H-C isotopes\",\"authors\":\"Renke Wang , Xiaobo Zhao , Chunji Xue , Haixia Chu , Yun Zhao , Qing Sun , Wanjin Zhu\",\"doi\":\"10.1016/j.oregeorev.2024.106220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Nulasai deposit is the earliest Cu mine in Xinjiang, NW China, and has been mined and smelted since the warring state period. Another striking characteristic of the deposit is the high-grade (ave. 1.34 % Cu) with bornite, chalcopyrite and chalcocite as main ore minerals. Through a field and petrographic investigation, three phases of hydrothermal evolution have been recognized at the Nulasai Cu deposit, including the stage I magnetite – quartz ± chalcopyrite ± bornite veins, the stage II calcite – barite ± chalcopyrite ± chalcocite ± pyrite ± bornite veins, and the stage III calcite – barite ± chalcopyrite ± sphalerite ± pyrite ± galena veins. Fluid inclusions of the stage I veins were captured under two-phase condition indicates that existence of both contemporaneous daughter mineral-bearing and liquid-rich fluid inclusions; they have an intermediate-high salinity (11.5 ∼ 38.5 wt% NaCl equiv) and homogenization temperature (266 ∼ 376 °C), with entrapment pressures from 47 to 167 bar (depth of approximately 0.5 to 1.7 km). The coexistence of vapor-rich and liquid-rich fluid inclusions was a defining feature of the stage II fluid inclusions, and they have an intermediate salinity (6.2 ∼ 10.7 wt.%NaCl equiv) and homogenization temperature (211 ∼ 287 °C), with entrapment pressures from 18 to 70 bar (depth of approximately 0.2 to 0.7 km). Fluid inclusions of the stage III veins were captured under two-phase condition, and intermediate-low salinity (3.2 ∼ 9.2 wt.%NaCl equiv) and homogenization temperature (155 ∼ 241 °C), with entrapment pressures of 6 to 32 bar (depth of 0.1 to 0.6 km). According to the stable isotope (O-H-C) data for the three mineralization phases, magmatic water containing organic carbon made up the majority of the early ore-forming fluids, whereas abundant meteoric water has been involved during the late stage of mineralization. Therefore, we suggest that fluid mixture between magmatic water and meteoric water may have led to simultaneous decrease of fluid temperature, salinity and their stable isotope values, and finally facilitates the Cu ore precipitation. This study emphasizes how high-grade Cu deposition in orogenic belts is initiated by fluid dilution.</p></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169136824003536/pdfft?md5=bddde4a4e8a5b850e7688236d3cc4dbe&pid=1-s2.0-S0169136824003536-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136824003536\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824003536","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Fluid evolution of the Nulasai Cu deposit, Xinjiang, NW China: Evidence from fluid inclusions and O-H-C isotopes
The Nulasai deposit is the earliest Cu mine in Xinjiang, NW China, and has been mined and smelted since the warring state period. Another striking characteristic of the deposit is the high-grade (ave. 1.34 % Cu) with bornite, chalcopyrite and chalcocite as main ore minerals. Through a field and petrographic investigation, three phases of hydrothermal evolution have been recognized at the Nulasai Cu deposit, including the stage I magnetite – quartz ± chalcopyrite ± bornite veins, the stage II calcite – barite ± chalcopyrite ± chalcocite ± pyrite ± bornite veins, and the stage III calcite – barite ± chalcopyrite ± sphalerite ± pyrite ± galena veins. Fluid inclusions of the stage I veins were captured under two-phase condition indicates that existence of both contemporaneous daughter mineral-bearing and liquid-rich fluid inclusions; they have an intermediate-high salinity (11.5 ∼ 38.5 wt% NaCl equiv) and homogenization temperature (266 ∼ 376 °C), with entrapment pressures from 47 to 167 bar (depth of approximately 0.5 to 1.7 km). The coexistence of vapor-rich and liquid-rich fluid inclusions was a defining feature of the stage II fluid inclusions, and they have an intermediate salinity (6.2 ∼ 10.7 wt.%NaCl equiv) and homogenization temperature (211 ∼ 287 °C), with entrapment pressures from 18 to 70 bar (depth of approximately 0.2 to 0.7 km). Fluid inclusions of the stage III veins were captured under two-phase condition, and intermediate-low salinity (3.2 ∼ 9.2 wt.%NaCl equiv) and homogenization temperature (155 ∼ 241 °C), with entrapment pressures of 6 to 32 bar (depth of 0.1 to 0.6 km). According to the stable isotope (O-H-C) data for the three mineralization phases, magmatic water containing organic carbon made up the majority of the early ore-forming fluids, whereas abundant meteoric water has been involved during the late stage of mineralization. Therefore, we suggest that fluid mixture between magmatic water and meteoric water may have led to simultaneous decrease of fluid temperature, salinity and their stable isotope values, and finally facilitates the Cu ore precipitation. This study emphasizes how high-grade Cu deposition in orogenic belts is initiated by fluid dilution.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.