{"title":"氮肥和播种日期作为地中海条件下小麦适应气候变化的工具","authors":"","doi":"10.1016/j.eja.2024.127346","DOIUrl":null,"url":null,"abstract":"<div><p>In the current situation, climate change has substantially disturbed precipitation occurrence in the Mediterranean region, by increasing its variability and decreasing the total annual amount, which both negatively affect rainfed crop productivity. We hypothesize that a simple cost-effective method for enhancing crop adaptation to new climate conditions would consist of modifying the crop sowing date. Traditional nitrogen (N) fertilization rates could also be adjusted to the current situation given the interdependent water/N relation in plant nutrition. Based on this hypothesis, during a 4-year field experiment with bread wheat <em>(Triticum aestivum</em> L., var. Pistolo), the effects of three sowing dates (October, November, February) and three N fertilization rates (54 kg N ha<sup>−1</sup>, 27 kg N ha<sup>−1</sup>, 0 kg N ha<sup>−1</sup>) on crop development, yield, grain quality, soil N content and N use efficiency were analyzed. The results showed that water scarcity was the predominant limiting factor, because it outweighed N deficiency with half-fertilized crops being as productive as fully fertilized treatments. Nevertheless, sowing date was the most influential factor, with up to a 30 % yield increase noted for the November-sown wheat compared to that sown in October, while delaying wheat sowing to February decreased crop yields. Grain protein content remained the same between the November- and October-sown crops, but increased in the February one crops. Optical sensor measurements showed that an optimal assessment of the current water/N nutritional status of crops can be achieved with these tools.</p></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1161030124002673/pdfft?md5=41d521df5cc78be71c8eb52b528104e5&pid=1-s2.0-S1161030124002673-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nitrogen fertilization and sowing date as wheat climate change adaptation tools under Mediterranean conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.eja.2024.127346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current situation, climate change has substantially disturbed precipitation occurrence in the Mediterranean region, by increasing its variability and decreasing the total annual amount, which both negatively affect rainfed crop productivity. We hypothesize that a simple cost-effective method for enhancing crop adaptation to new climate conditions would consist of modifying the crop sowing date. Traditional nitrogen (N) fertilization rates could also be adjusted to the current situation given the interdependent water/N relation in plant nutrition. Based on this hypothesis, during a 4-year field experiment with bread wheat <em>(Triticum aestivum</em> L., var. Pistolo), the effects of three sowing dates (October, November, February) and three N fertilization rates (54 kg N ha<sup>−1</sup>, 27 kg N ha<sup>−1</sup>, 0 kg N ha<sup>−1</sup>) on crop development, yield, grain quality, soil N content and N use efficiency were analyzed. The results showed that water scarcity was the predominant limiting factor, because it outweighed N deficiency with half-fertilized crops being as productive as fully fertilized treatments. Nevertheless, sowing date was the most influential factor, with up to a 30 % yield increase noted for the November-sown wheat compared to that sown in October, while delaying wheat sowing to February decreased crop yields. Grain protein content remained the same between the November- and October-sown crops, but increased in the February one crops. Optical sensor measurements showed that an optimal assessment of the current water/N nutritional status of crops can be achieved with these tools.</p></div>\",\"PeriodicalId\":51045,\"journal\":{\"name\":\"European Journal of Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1161030124002673/pdfft?md5=41d521df5cc78be71c8eb52b528104e5&pid=1-s2.0-S1161030124002673-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1161030124002673\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124002673","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Nitrogen fertilization and sowing date as wheat climate change adaptation tools under Mediterranean conditions
In the current situation, climate change has substantially disturbed precipitation occurrence in the Mediterranean region, by increasing its variability and decreasing the total annual amount, which both negatively affect rainfed crop productivity. We hypothesize that a simple cost-effective method for enhancing crop adaptation to new climate conditions would consist of modifying the crop sowing date. Traditional nitrogen (N) fertilization rates could also be adjusted to the current situation given the interdependent water/N relation in plant nutrition. Based on this hypothesis, during a 4-year field experiment with bread wheat (Triticum aestivum L., var. Pistolo), the effects of three sowing dates (October, November, February) and three N fertilization rates (54 kg N ha−1, 27 kg N ha−1, 0 kg N ha−1) on crop development, yield, grain quality, soil N content and N use efficiency were analyzed. The results showed that water scarcity was the predominant limiting factor, because it outweighed N deficiency with half-fertilized crops being as productive as fully fertilized treatments. Nevertheless, sowing date was the most influential factor, with up to a 30 % yield increase noted for the November-sown wheat compared to that sown in October, while delaying wheat sowing to February decreased crop yields. Grain protein content remained the same between the November- and October-sown crops, but increased in the February one crops. Optical sensor measurements showed that an optimal assessment of the current water/N nutritional status of crops can be achieved with these tools.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.