激光熔覆 FeCoCrNiAl0.5Ti0.5 HEAs 涂层磨损机制中 FCC + BCC 双相之间的竞争关系

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"激光熔覆 FeCoCrNiAl0.5Ti0.5 HEAs 涂层磨损机制中 FCC + BCC 双相之间的竞争关系","authors":"","doi":"10.1016/j.surfcoat.2024.131315","DOIUrl":null,"url":null,"abstract":"<div><p>This work elaborated the microstructure and wear behavior of laser cladding (LC) FeCoCrNiAl<sub>0.5</sub>Ti<sub>0.5</sub> high-entropy alloys (HEAs) coatings on AISI 1045 steel substrates. The microstructure of the HEAs coatings is mainly comprised of a body-centered-cubic (BCC) + face-centered-cubic (FCC) dual-phase structure. Besides, the coating exhibites high hardness. During the friction process, the FCC phase was more prone to deformation and peeling than BCC structure. As the alloying elements (such as Al, Ti, and Cr) tend to form oxide film at high temperatures during friction, the friction process of the LC FeCoCrNiAl<sub>0.5</sub>Ti<sub>0.5</sub> coating was mainly controlled by oxidative wear and adhesive wear mechanisms. Friction test results showed that the coating owned excellent wear resistance and the wear rate of the HEAs coating was only 6.53 % of the wear rate of the steel substrate.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive relationship between the FCC + BCC dual phases in the wear mechanism of laser cladding FeCoCrNiAl0.5Ti0.5 HEAs coating\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work elaborated the microstructure and wear behavior of laser cladding (LC) FeCoCrNiAl<sub>0.5</sub>Ti<sub>0.5</sub> high-entropy alloys (HEAs) coatings on AISI 1045 steel substrates. The microstructure of the HEAs coatings is mainly comprised of a body-centered-cubic (BCC) + face-centered-cubic (FCC) dual-phase structure. Besides, the coating exhibites high hardness. During the friction process, the FCC phase was more prone to deformation and peeling than BCC structure. As the alloying elements (such as Al, Ti, and Cr) tend to form oxide film at high temperatures during friction, the friction process of the LC FeCoCrNiAl<sub>0.5</sub>Ti<sub>0.5</sub> coating was mainly controlled by oxidative wear and adhesive wear mechanisms. Friction test results showed that the coating owned excellent wear resistance and the wear rate of the HEAs coating was only 6.53 % of the wear rate of the steel substrate.</p></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224009460\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224009460","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究阐述了在 AISI 1045 钢基体上激光熔覆(LC)FeCoCrNiAl0.5Ti0.5 高熵合金(HEAs)涂层的微观结构和磨损行为。HEAs 涂层的微观结构主要由体心立方体 (BCC) + 面心立方体 (FCC) 双相结构组成。此外,涂层还具有很高的硬度。在摩擦过程中,FCC 相比 BCC 结构更容易变形和剥落。由于合金元素(如 Al、Ti 和 Cr)在摩擦过程中容易在高温下形成氧化膜,因此 LC FeCoCrNiAl0.5Ti0.5 涂层的摩擦过程主要由氧化磨损和粘着磨损机制控制。摩擦试验结果表明,涂层具有优异的耐磨性,HEAs 涂层的磨损率仅为钢基磨损率的 6.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive relationship between the FCC + BCC dual phases in the wear mechanism of laser cladding FeCoCrNiAl0.5Ti0.5 HEAs coating

This work elaborated the microstructure and wear behavior of laser cladding (LC) FeCoCrNiAl0.5Ti0.5 high-entropy alloys (HEAs) coatings on AISI 1045 steel substrates. The microstructure of the HEAs coatings is mainly comprised of a body-centered-cubic (BCC) + face-centered-cubic (FCC) dual-phase structure. Besides, the coating exhibites high hardness. During the friction process, the FCC phase was more prone to deformation and peeling than BCC structure. As the alloying elements (such as Al, Ti, and Cr) tend to form oxide film at high temperatures during friction, the friction process of the LC FeCoCrNiAl0.5Ti0.5 coating was mainly controlled by oxidative wear and adhesive wear mechanisms. Friction test results showed that the coating owned excellent wear resistance and the wear rate of the HEAs coating was only 6.53 % of the wear rate of the steel substrate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信