制备作为准固态不对称超级电容器的 NiO/TiO2/rGO 纳米复合材料:为光电超级电容器的应用铺平道路

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
{"title":"制备作为准固态不对称超级电容器的 NiO/TiO2/rGO 纳米复合材料:为光电超级电容器的应用铺平道路","authors":"","doi":"10.1016/j.mtsust.2024.100972","DOIUrl":null,"url":null,"abstract":"<div><p>In this present communication, a novel ternary nanocomposite, NiO/TiO<sub>2</sub>/rGO (NTG), was synthesised via a simple hydrothermal technique for photosupercapacitor application. The XRD pattern confirmed the crystalline nature and phase structure of the as-synthesised material. FE-SEM and HR-TEM analyses demonstrated the embellishment of NiO/TiO<sub>2</sub> nanoparticles on the rGO sheets, which facilitates more voids and shorter diffusion paths. The electrochemical investigation of the prepared samples was assessed using 1 M Na<sub>2</sub>SO<sub>4</sub> and Na<sub>2</sub>CO<sub>3</sub> aqueous electrolyte solutions. Among the synthesised samples, NTG-2 carried out under 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte exhibited a maximum specific capacitance of 1285 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, maintaining a capacitance retention of 94 % after 5000 cycles. The NTG-2 electrode was additionally utilised in the construction of an asymmetric supercapacitor that has an impressive specific capacitance of 478 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>. This displays an intriguing performance in terms of energy and power density of 42.2 Wh Kg<sup>−1</sup> at 0.5 kW kg<sup>−1</sup>. In PSC, the as-fabricated TiO<sub>2</sub>/N719/I<sup>−</sup>/I<sub>3</sub><sup>−</sup>/Pt@NTG-2//AC architecture possessed a specific capacitance of 567.5 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, with an energy density of 50.4 Wh Kg<sup>−1</sup> and a power density of 0.4 kW kg<sup>−1</sup>. As a result, it has been concluded that the novel NTG-2 device opens new opportunities to develop new architectures for efficient energy storage applications.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of NiO/TiO2/rGO nanocomposites as a quasi-solid-state asymmetric supercapacitor: Paving the way for PhotoSupercapacitor application\",\"authors\":\"\",\"doi\":\"10.1016/j.mtsust.2024.100972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this present communication, a novel ternary nanocomposite, NiO/TiO<sub>2</sub>/rGO (NTG), was synthesised via a simple hydrothermal technique for photosupercapacitor application. The XRD pattern confirmed the crystalline nature and phase structure of the as-synthesised material. FE-SEM and HR-TEM analyses demonstrated the embellishment of NiO/TiO<sub>2</sub> nanoparticles on the rGO sheets, which facilitates more voids and shorter diffusion paths. The electrochemical investigation of the prepared samples was assessed using 1 M Na<sub>2</sub>SO<sub>4</sub> and Na<sub>2</sub>CO<sub>3</sub> aqueous electrolyte solutions. Among the synthesised samples, NTG-2 carried out under 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte exhibited a maximum specific capacitance of 1285 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, maintaining a capacitance retention of 94 % after 5000 cycles. The NTG-2 electrode was additionally utilised in the construction of an asymmetric supercapacitor that has an impressive specific capacitance of 478 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>. This displays an intriguing performance in terms of energy and power density of 42.2 Wh Kg<sup>−1</sup> at 0.5 kW kg<sup>−1</sup>. In PSC, the as-fabricated TiO<sub>2</sub>/N719/I<sup>−</sup>/I<sub>3</sub><sup>−</sup>/Pt@NTG-2//AC architecture possessed a specific capacitance of 567.5 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup>, with an energy density of 50.4 Wh Kg<sup>−1</sup> and a power density of 0.4 kW kg<sup>−1</sup>. As a result, it has been concluded that the novel NTG-2 device opens new opportunities to develop new architectures for efficient energy storage applications.</p></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003087\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003087","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇通讯中,通过一种简单的水热技术合成了一种新型三元纳米复合材料--NiO/TiO2/rGO (NTG),并将其应用于光超级电容器。XRD 图谱证实了合成材料的结晶性质和相结构。FE-SEM和HR-TEM分析表明,NiO/TiO2纳米颗粒在rGO片上的点缀,有利于增加空隙和缩短扩散路径。使用 1 M Na2SO4 和 Na2CO3 水电解质溶液对制备的样品进行了电化学研究。在合成的样品中,NTG-2 在 1 M Na2SO4 电解液中,1 Ag-1 时的最大比电容为 1285 Fg-1,5000 次循环后的电容保持率为 94%。此外,NTG-2 电极还被用于构建不对称超级电容器,在 1 Ag-1 条件下,其比电容高达 478 Fg-1。在 0.5 kW kg-1 的条件下,其能量和功率密度为 42.2 Wh Kg-1,表现十分出色。在 PSC 中,制备的 TiO2/N719/I-/I3-/Pt@NTG-2//AC 结构在 1 Ag-1 条件下的比电容为 567.5 Fg-1,能量密度为 50.4 Wh Kg-1,功率密度为 0.4 kW kg-1。因此,新型 NTG-2 器件为开发高效储能应用的新架构提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of NiO/TiO2/rGO nanocomposites as a quasi-solid-state asymmetric supercapacitor: Paving the way for PhotoSupercapacitor application

In this present communication, a novel ternary nanocomposite, NiO/TiO2/rGO (NTG), was synthesised via a simple hydrothermal technique for photosupercapacitor application. The XRD pattern confirmed the crystalline nature and phase structure of the as-synthesised material. FE-SEM and HR-TEM analyses demonstrated the embellishment of NiO/TiO2 nanoparticles on the rGO sheets, which facilitates more voids and shorter diffusion paths. The electrochemical investigation of the prepared samples was assessed using 1 M Na2SO4 and Na2CO3 aqueous electrolyte solutions. Among the synthesised samples, NTG-2 carried out under 1 M Na2SO4 electrolyte exhibited a maximum specific capacitance of 1285 Fg-1 at 1 Ag-1, maintaining a capacitance retention of 94 % after 5000 cycles. The NTG-2 electrode was additionally utilised in the construction of an asymmetric supercapacitor that has an impressive specific capacitance of 478 Fg-1 at 1 Ag-1. This displays an intriguing performance in terms of energy and power density of 42.2 Wh Kg−1 at 0.5 kW kg−1. In PSC, the as-fabricated TiO2/N719/I/I3/Pt@NTG-2//AC architecture possessed a specific capacitance of 567.5 Fg-1 at 1 Ag-1, with an energy density of 50.4 Wh Kg−1 and a power density of 0.4 kW kg−1. As a result, it has been concluded that the novel NTG-2 device opens new opportunities to develop new architectures for efficient energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信