{"title":"CFD 中输入不确定性传播的高效方法及其在浮力驱动流中的应用","authors":"Ruiyun Ji , Stephan Kelm , Markus Klein","doi":"10.1016/j.nucengdes.2024.113560","DOIUrl":null,"url":null,"abstract":"<div><p>Severe accident scenarios address the release of large amounts of hydrogen and steam to the containment. The formation of a flammable gas cloud could lead to a combustion and even failure of containment structures. In order to support the hydrogen mitigation method development, a detailed understanding of the gas transport and mixing process is crucial. Efforts in terms of numerical simulations such as Computational Fluid Dynamics (CFD) models have been made, which allow to investigate the complex 3D gas mixing process. One of the uncertainty sources that challenge the reliability of CFD validation results is the input uncertainty. It was assessed efficiently using the deterministic sampling method, which requires e.g., in the present case only eight binary samples for seven uncertain input parameters. However, the lean number of samples makes the direct derivation of a probability density function as well as a 95% confidence interval impossible. The assumption of a normal distribution does not always yield convincing and physically consistent output uncertainty bands, in particular for measurements inherent to oscillations. In this context, a new method has been proposed, which enables the generation of reasonable pseudo-samples without additional CFD simulations and the derivation of 95% confidence interval through the statistical analysis on these pseudo-samples. It was assessed against the Monte Carlo sampling method with a simple test case and confirmed an improved prediction. This method has been applied to the large scale application-oriented validation case THAI-TH32 in this work, in order to assess the impact of input uncertainties on the CFD results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0029549324006605/pdfft?md5=bd613eb8d09326f56106a6885c26d27b&pid=1-s2.0-S0029549324006605-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient method for input uncertainty propagation in CFD and the application to buoyancy-driven flows\",\"authors\":\"Ruiyun Ji , Stephan Kelm , Markus Klein\",\"doi\":\"10.1016/j.nucengdes.2024.113560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe accident scenarios address the release of large amounts of hydrogen and steam to the containment. The formation of a flammable gas cloud could lead to a combustion and even failure of containment structures. In order to support the hydrogen mitigation method development, a detailed understanding of the gas transport and mixing process is crucial. Efforts in terms of numerical simulations such as Computational Fluid Dynamics (CFD) models have been made, which allow to investigate the complex 3D gas mixing process. One of the uncertainty sources that challenge the reliability of CFD validation results is the input uncertainty. It was assessed efficiently using the deterministic sampling method, which requires e.g., in the present case only eight binary samples for seven uncertain input parameters. However, the lean number of samples makes the direct derivation of a probability density function as well as a 95% confidence interval impossible. The assumption of a normal distribution does not always yield convincing and physically consistent output uncertainty bands, in particular for measurements inherent to oscillations. In this context, a new method has been proposed, which enables the generation of reasonable pseudo-samples without additional CFD simulations and the derivation of 95% confidence interval through the statistical analysis on these pseudo-samples. It was assessed against the Monte Carlo sampling method with a simple test case and confirmed an improved prediction. This method has been applied to the large scale application-oriented validation case THAI-TH32 in this work, in order to assess the impact of input uncertainties on the CFD results.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0029549324006605/pdfft?md5=bd613eb8d09326f56106a6885c26d27b&pid=1-s2.0-S0029549324006605-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324006605\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324006605","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An efficient method for input uncertainty propagation in CFD and the application to buoyancy-driven flows
Severe accident scenarios address the release of large amounts of hydrogen and steam to the containment. The formation of a flammable gas cloud could lead to a combustion and even failure of containment structures. In order to support the hydrogen mitigation method development, a detailed understanding of the gas transport and mixing process is crucial. Efforts in terms of numerical simulations such as Computational Fluid Dynamics (CFD) models have been made, which allow to investigate the complex 3D gas mixing process. One of the uncertainty sources that challenge the reliability of CFD validation results is the input uncertainty. It was assessed efficiently using the deterministic sampling method, which requires e.g., in the present case only eight binary samples for seven uncertain input parameters. However, the lean number of samples makes the direct derivation of a probability density function as well as a 95% confidence interval impossible. The assumption of a normal distribution does not always yield convincing and physically consistent output uncertainty bands, in particular for measurements inherent to oscillations. In this context, a new method has been proposed, which enables the generation of reasonable pseudo-samples without additional CFD simulations and the derivation of 95% confidence interval through the statistical analysis on these pseudo-samples. It was assessed against the Monte Carlo sampling method with a simple test case and confirmed an improved prediction. This method has been applied to the large scale application-oriented validation case THAI-TH32 in this work, in order to assess the impact of input uncertainties on the CFD results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.