{"title":"废物变能源技术:整合厌氧消化、微生物电解池、流体动力空化和电凝技术","authors":"","doi":"10.1016/j.jclepro.2024.143549","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores a novel integration of electro-physicochemical technologies to generate energy and treat water from combined food waste (FW) and blackwater (FW-BW), with BW containing waste activated sludge with simulated flush water. The FW-BW substrate was gravity-separated and pretreated with hydrodynamic cavitation (HDC). Solids from gravity separation were used for energy generation via anaerobic digestion (AD) alone or integrated with microbial electrolysis cells (AD-MEC). HDC pretreatment had 51.6% more CH<sub>4</sub> production in 5 days (266 mL CH<sub>4</sub>/g VS) and 63% more in 30 days compared to AD without HDC. The CH<sub>4</sub> production after 5 days of digestion with HDC pretreatment (266 mL CH<sub>4</sub>/g VS) was similar to the amount produced without HDC over 30 days (263 mL CH<sub>4</sub>/g VS). Using MEC increased CH<sub>4</sub> production by 12.7% compared to AD-only. The liquids from gravity separation were treated with electrocoagulation (EC) at 15 V (90 min), which removed 96.2% of the chemical oxygen demand (COD) and 100% of the total suspended solids. The pilot scale design indicates that the AD-MEC and EC units would generate 1.4 times more energy than energy consumed through applying these novel technologies. These findings demonstration the applications of four technologies (HDC, AD, MEC, and EC) in an energy-efficient waste management approach, producing bioenergy and cleaner water for low-tier use, especially in areas lacking traditional waste treatment options.</p></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959652624029986/pdfft?md5=7ffacd3c3c50e669b83e85eb22e122e3&pid=1-s2.0-S0959652624029986-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Waste-to-energy technologies: Integrating anaerobic digestion, microbial electrolysis cells, hydrodynamic cavitation, and electrocoagulation\",\"authors\":\"\",\"doi\":\"10.1016/j.jclepro.2024.143549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores a novel integration of electro-physicochemical technologies to generate energy and treat water from combined food waste (FW) and blackwater (FW-BW), with BW containing waste activated sludge with simulated flush water. The FW-BW substrate was gravity-separated and pretreated with hydrodynamic cavitation (HDC). Solids from gravity separation were used for energy generation via anaerobic digestion (AD) alone or integrated with microbial electrolysis cells (AD-MEC). HDC pretreatment had 51.6% more CH<sub>4</sub> production in 5 days (266 mL CH<sub>4</sub>/g VS) and 63% more in 30 days compared to AD without HDC. The CH<sub>4</sub> production after 5 days of digestion with HDC pretreatment (266 mL CH<sub>4</sub>/g VS) was similar to the amount produced without HDC over 30 days (263 mL CH<sub>4</sub>/g VS). Using MEC increased CH<sub>4</sub> production by 12.7% compared to AD-only. The liquids from gravity separation were treated with electrocoagulation (EC) at 15 V (90 min), which removed 96.2% of the chemical oxygen demand (COD) and 100% of the total suspended solids. The pilot scale design indicates that the AD-MEC and EC units would generate 1.4 times more energy than energy consumed through applying these novel technologies. These findings demonstration the applications of four technologies (HDC, AD, MEC, and EC) in an energy-efficient waste management approach, producing bioenergy and cleaner water for low-tier use, especially in areas lacking traditional waste treatment options.</p></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959652624029986/pdfft?md5=7ffacd3c3c50e669b83e85eb22e122e3&pid=1-s2.0-S0959652624029986-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652624029986\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624029986","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
This study explores a novel integration of electro-physicochemical technologies to generate energy and treat water from combined food waste (FW) and blackwater (FW-BW), with BW containing waste activated sludge with simulated flush water. The FW-BW substrate was gravity-separated and pretreated with hydrodynamic cavitation (HDC). Solids from gravity separation were used for energy generation via anaerobic digestion (AD) alone or integrated with microbial electrolysis cells (AD-MEC). HDC pretreatment had 51.6% more CH4 production in 5 days (266 mL CH4/g VS) and 63% more in 30 days compared to AD without HDC. The CH4 production after 5 days of digestion with HDC pretreatment (266 mL CH4/g VS) was similar to the amount produced without HDC over 30 days (263 mL CH4/g VS). Using MEC increased CH4 production by 12.7% compared to AD-only. The liquids from gravity separation were treated with electrocoagulation (EC) at 15 V (90 min), which removed 96.2% of the chemical oxygen demand (COD) and 100% of the total suspended solids. The pilot scale design indicates that the AD-MEC and EC units would generate 1.4 times more energy than energy consumed through applying these novel technologies. These findings demonstration the applications of four technologies (HDC, AD, MEC, and EC) in an energy-efficient waste management approach, producing bioenergy and cleaner water for low-tier use, especially in areas lacking traditional waste treatment options.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.