通过搅拌摩擦加工制造镁基生物陶瓷增强复合材料

Q1 Engineering
Matthew S. Dargusch , Nan Yang , Nagasivamuni Balasubramani , Jeffrey Venezuela , Shiyang Liu , Lei Jing , Yu Sen , Jiangtao Qu , Gui Wang , Julie Cairney
{"title":"通过搅拌摩擦加工制造镁基生物陶瓷增强复合材料","authors":"Matthew S. Dargusch ,&nbsp;Nan Yang ,&nbsp;Nagasivamuni Balasubramani ,&nbsp;Jeffrey Venezuela ,&nbsp;Shiyang Liu ,&nbsp;Lei Jing ,&nbsp;Yu Sen ,&nbsp;Jiangtao Qu ,&nbsp;Gui Wang ,&nbsp;Julie Cairney","doi":"10.1016/j.smaim.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the degradation performance and enhancing the biocompatibility are the main challenges of Mg-based biodegradable implants. In this study, a nano-hydroxyapatite-enhanced (nHA) Mg matrix composite was fabricated via friction stir processing and characterised, including microstructure, mechanical, <em>in vitro</em> degradation properties, and cytocompatibility. Hydroxyapatite is renowned for its superior bone compatibility, promoting healing responses and tissue growth. Friction stirring created a gradient grain structure in the alloy, with the stir zone exhibiting the highest grain refinement. The stir zone also contained most of the incorporated nHA and exhibited a strong texture with grains preferentially oriented along the [0001] direction. Immersion and polarisation experiments showed an increase in the FSPed WE43-nHA's corrosion resistance due to the refined microstructure. The treatment also caused a shift in the corrosion mode of the alloy from localized to uniform corrosion despite some localized corrosion associated with the nHA. Cytocompatibility tests in human osteoblast (HOB) cell lines indicated good biocompatibility in the Mg-nHA alloy, with cells exhibiting relatively healthy morphology and increased live cell count. Friction stir processing is a viable manufacturing option for creating Mg-based metal matrix composites with improved corrosion resistance and good biocompatibility.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 3","pages":"Pages 447-459"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000383/pdfft?md5=01da0722a394ab3580f60d4c0a5c786a&pid=1-s2.0-S2590183424000383-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing\",\"authors\":\"Matthew S. Dargusch ,&nbsp;Nan Yang ,&nbsp;Nagasivamuni Balasubramani ,&nbsp;Jeffrey Venezuela ,&nbsp;Shiyang Liu ,&nbsp;Lei Jing ,&nbsp;Yu Sen ,&nbsp;Jiangtao Qu ,&nbsp;Gui Wang ,&nbsp;Julie Cairney\",\"doi\":\"10.1016/j.smaim.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving the degradation performance and enhancing the biocompatibility are the main challenges of Mg-based biodegradable implants. In this study, a nano-hydroxyapatite-enhanced (nHA) Mg matrix composite was fabricated via friction stir processing and characterised, including microstructure, mechanical, <em>in vitro</em> degradation properties, and cytocompatibility. Hydroxyapatite is renowned for its superior bone compatibility, promoting healing responses and tissue growth. Friction stirring created a gradient grain structure in the alloy, with the stir zone exhibiting the highest grain refinement. The stir zone also contained most of the incorporated nHA and exhibited a strong texture with grains preferentially oriented along the [0001] direction. Immersion and polarisation experiments showed an increase in the FSPed WE43-nHA's corrosion resistance due to the refined microstructure. The treatment also caused a shift in the corrosion mode of the alloy from localized to uniform corrosion despite some localized corrosion associated with the nHA. Cytocompatibility tests in human osteoblast (HOB) cell lines indicated good biocompatibility in the Mg-nHA alloy, with cells exhibiting relatively healthy morphology and increased live cell count. Friction stir processing is a viable manufacturing option for creating Mg-based metal matrix composites with improved corrosion resistance and good biocompatibility.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":\"5 3\",\"pages\":\"Pages 447-459\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590183424000383/pdfft?md5=01da0722a394ab3580f60d4c0a5c786a&pid=1-s2.0-S2590183424000383-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183424000383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183424000383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

改善降解性能和提高生物相容性是镁基可生物降解植入物面临的主要挑战。在这项研究中,通过搅拌摩擦加工制造了纳米羟基磷灰石增强(nHA)镁基复合材料,并对其进行了表征,包括微观结构、机械性能、体外降解性能和细胞相容性。羟基磷灰石因其卓越的骨兼容性、促进愈合反应和组织生长而闻名。摩擦搅拌在合金中形成了梯度晶粒结构,搅拌区的晶粒细化程度最高。搅拌区还含有大部分掺入的 nHA,并呈现出强烈的纹理,晶粒优先沿 [0001] 方向取向。浸泡和极化实验表明,由于微观结构的细化,FSPed WE43-nHA 的耐腐蚀性能有所提高。处理还导致合金的腐蚀模式从局部腐蚀转变为均匀腐蚀,尽管 nHA 存在一些局部腐蚀。人类成骨细胞(HOB)细胞系的细胞相容性测试表明,Mg-nHA 合金具有良好的生物相容性,细胞表现出相对健康的形态,活细胞数量增加。搅拌摩擦加工是制造具有更强耐腐蚀性和良好生物相容性的镁基金属基复合材料的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing

Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing

Improving the degradation performance and enhancing the biocompatibility are the main challenges of Mg-based biodegradable implants. In this study, a nano-hydroxyapatite-enhanced (nHA) Mg matrix composite was fabricated via friction stir processing and characterised, including microstructure, mechanical, in vitro degradation properties, and cytocompatibility. Hydroxyapatite is renowned for its superior bone compatibility, promoting healing responses and tissue growth. Friction stirring created a gradient grain structure in the alloy, with the stir zone exhibiting the highest grain refinement. The stir zone also contained most of the incorporated nHA and exhibited a strong texture with grains preferentially oriented along the [0001] direction. Immersion and polarisation experiments showed an increase in the FSPed WE43-nHA's corrosion resistance due to the refined microstructure. The treatment also caused a shift in the corrosion mode of the alloy from localized to uniform corrosion despite some localized corrosion associated with the nHA. Cytocompatibility tests in human osteoblast (HOB) cell lines indicated good biocompatibility in the Mg-nHA alloy, with cells exhibiting relatively healthy morphology and increased live cell count. Friction stir processing is a viable manufacturing option for creating Mg-based metal matrix composites with improved corrosion resistance and good biocompatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信