{"title":"鞍点问题惯性加速初等二元算法的非啮合收敛速率","authors":"Xin He , Nan-Jing Huang , Ya-Ping Fang","doi":"10.1016/j.cnsns.2024.108289","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems\",\"authors\":\"Xin He , Nan-Jing Huang , Ya-Ping Fang\",\"doi\":\"10.1016/j.cnsns.2024.108289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400474X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文设计了一种惯性加速初等二元算法来解决凸凹鞍点问题,该问题可表述为 minxmaxyf(x)+〈Kx,y〉-g(y)。值得注意的是,函数 f 和 g 都表现出一种复合结构,将 "非光滑"+"光滑 "成分结合在一起。在部分强凸的假设下,即 f 是凸的,g 是强凸的,我们引入了一种基于内斯特罗夫外推法的新型惯性加速初等二元算法。该算法可简化为无约束优化问题的两种经典加速前向后向方法。我们证明,所提出的算法达到了非啮合的 O(1/k2) 收敛率,其中 k 代表迭代次数。几个数值实验验证了我们提出的算法的效率。
Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems
In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as . Remarkably, both functions and exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that is convex and is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic convergence rate, where represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.