鞍点问题惯性加速初等二元算法的非啮合收敛速率

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin He , Nan-Jing Huang , Ya-Ping Fang
{"title":"鞍点问题惯性加速初等二元算法的非啮合收敛速率","authors":"Xin He ,&nbsp;Nan-Jing Huang ,&nbsp;Ya-Ping Fang","doi":"10.1016/j.cnsns.2024.108289","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems\",\"authors\":\"Xin He ,&nbsp;Nan-Jing Huang ,&nbsp;Ya-Ping Fang\",\"doi\":\"10.1016/j.cnsns.2024.108289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400474X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种惯性加速初等二元算法来解决凸凹鞍点问题,该问题可表述为 minxmaxyf(x)+〈Kx,y〉-g(y)。值得注意的是,函数 f 和 g 都表现出一种复合结构,将 "非光滑"+"光滑 "成分结合在一起。在部分强凸的假设下,即 f 是凸的,g 是强凸的,我们引入了一种基于内斯特罗夫外推法的新型惯性加速初等二元算法。该算法可简化为无约束优化问题的两种经典加速前向后向方法。我们证明,所提出的算法达到了非啮合的 O(1/k2) 收敛率,其中 k 代表迭代次数。几个数值实验验证了我们提出的算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems

In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as minxmaxyf(x)+Kx,yg(y). Remarkably, both functions f and g exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that f is convex and g is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic O(1/k2) convergence rate, where k represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信