{"title":"利用氨基功能化 Ti3C2 从制药废水中高效吸附钯离子并制备催化剂","authors":"Dancheng Zhu, Yonghui Lin, Changhui Chen, Hao Xu, Jiabin Shen, Jun Qiao, Chao Shen","doi":"10.1016/j.jssc.2024.125006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports the recovery and reuse of Pd ions from pharmaceutical wastewater using amino-modified Ti<sub>3</sub>C<sub>2</sub>. Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was synthesized by modifying (3-aminopropyl)triethoxysilane and the successful substitution of some surface functional groups of Ti<sub>3</sub>C<sub>2</sub>; the decrease in material thickness was verified by characterization. This study revealed that the presence of amino groups significantly enhanced the Pd(II) adsorption capacity of Ti<sub>3</sub>C<sub>2</sub>. The effects of the adsorbent material, adsorbent dosage, pH, initial concentration of Pd ions, presence of competing cations, and contact time on the adsorption performance were investigated. The maximum adsorption capacity of 20 mg of Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was 986.65 mg/g in 100 ml of a Pd-ion solution with an initial concentration of 200 mg/l at pH 3. A pseudo-second-order kinetic model fitted well with the experimentally obtained rate data, indicating that the main mode of Pd-ion removal by Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was via chemical reduction. Finally, the catalyst exhibited excellent performances during the photocatalytic and Suzuki coupling reactions with yields of 81 % and 95 %, respectively. The results demonstrated that Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> is an excellent material for adsorbing Pd ions and can effectively recycle these ions from pharmaceutical wastewater.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"340 ","pages":"Article 125006"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient palladium ion adsorption and catalyst preparation from pharmaceutical wastewater using amino-functionalized Ti3C2\",\"authors\":\"Dancheng Zhu, Yonghui Lin, Changhui Chen, Hao Xu, Jiabin Shen, Jun Qiao, Chao Shen\",\"doi\":\"10.1016/j.jssc.2024.125006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports the recovery and reuse of Pd ions from pharmaceutical wastewater using amino-modified Ti<sub>3</sub>C<sub>2</sub>. Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was synthesized by modifying (3-aminopropyl)triethoxysilane and the successful substitution of some surface functional groups of Ti<sub>3</sub>C<sub>2</sub>; the decrease in material thickness was verified by characterization. This study revealed that the presence of amino groups significantly enhanced the Pd(II) adsorption capacity of Ti<sub>3</sub>C<sub>2</sub>. The effects of the adsorbent material, adsorbent dosage, pH, initial concentration of Pd ions, presence of competing cations, and contact time on the adsorption performance were investigated. The maximum adsorption capacity of 20 mg of Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was 986.65 mg/g in 100 ml of a Pd-ion solution with an initial concentration of 200 mg/l at pH 3. A pseudo-second-order kinetic model fitted well with the experimentally obtained rate data, indicating that the main mode of Pd-ion removal by Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> was via chemical reduction. Finally, the catalyst exhibited excellent performances during the photocatalytic and Suzuki coupling reactions with yields of 81 % and 95 %, respectively. The results demonstrated that Ti<sub>3</sub>C<sub>2</sub>–NH<sub>2</sub> is an excellent material for adsorbing Pd ions and can effectively recycle these ions from pharmaceutical wastewater.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"340 \",\"pages\":\"Article 125006\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004602\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004602","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Efficient palladium ion adsorption and catalyst preparation from pharmaceutical wastewater using amino-functionalized Ti3C2
This paper reports the recovery and reuse of Pd ions from pharmaceutical wastewater using amino-modified Ti3C2. Ti3C2–NH2 was synthesized by modifying (3-aminopropyl)triethoxysilane and the successful substitution of some surface functional groups of Ti3C2; the decrease in material thickness was verified by characterization. This study revealed that the presence of amino groups significantly enhanced the Pd(II) adsorption capacity of Ti3C2. The effects of the adsorbent material, adsorbent dosage, pH, initial concentration of Pd ions, presence of competing cations, and contact time on the adsorption performance were investigated. The maximum adsorption capacity of 20 mg of Ti3C2–NH2 was 986.65 mg/g in 100 ml of a Pd-ion solution with an initial concentration of 200 mg/l at pH 3. A pseudo-second-order kinetic model fitted well with the experimentally obtained rate data, indicating that the main mode of Pd-ion removal by Ti3C2–NH2 was via chemical reduction. Finally, the catalyst exhibited excellent performances during the photocatalytic and Suzuki coupling reactions with yields of 81 % and 95 %, respectively. The results demonstrated that Ti3C2–NH2 is an excellent material for adsorbing Pd ions and can effectively recycle these ions from pharmaceutical wastewater.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.