Sebastiaan A.L.M. Kooijman , Michael R. Kearney , Nina Marn , Tânia Sousa , Tiago Domingos , Romain Lavaud , Charlotte Récapet , Tin Klanjšček , Tan T. Yeuw , Gonçalo M. Marques , Laure Pecquerie , Konstadia Lika
{"title":"从公式、模型到理论:动态能量预算理论说明要求","authors":"Sebastiaan A.L.M. Kooijman , Michael R. Kearney , Nina Marn , Tânia Sousa , Tiago Domingos , Romain Lavaud , Charlotte Récapet , Tin Klanjšček , Tan T. Yeuw , Gonçalo M. Marques , Laure Pecquerie , Konstadia Lika","doi":"10.1016/j.ecolmodel.2024.110869","DOIUrl":null,"url":null,"abstract":"<div><p>As sciences mature, they transition from observation and description to explanation and prediction. This transition is associated with qualitative changes in the way quantitative mathematical formulations are constructed and interpreted, resulting in a ‘theory’. Such transitions from phenomenology to theory are happening in biology but the heuristic framework involved is rarely articulated. We here describe how the use of models in research sets model requirements, using Dynamic Energy Budget (DEB) theory to illustrate the more elaborate ones. We first make the distinction between mathematical formulae and models based on their relation to the abstract and real worlds. We then explain how the transition from models to theory affects model construction and parameter estimation, and discuss the concept of parameter estimation-in-context using the database <span>Add_my_Pet</span> on animal energetics. The transition comes with the need to develop auxiliary and meta- theory and to work with multiple datasets, implying constraints for the loss function that is used for parameter estimation. Finally, we discuss the extra requirements for general explanatory models: they need to be explicit on relevant general principles and to be embedded in a wider scientific context. We also discuss how we see theory’s relationship to observation and prediction change in the future as we use it to deal with theoretical and applied problems in biology.</p></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"497 ","pages":"Article 110869"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304380024002576/pdfft?md5=228e10c1f46a21cabb9e48e43ac61c14&pid=1-s2.0-S0304380024002576-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From formulae, via models to theories: Dynamic Energy Budget theory illustrates requirements\",\"authors\":\"Sebastiaan A.L.M. Kooijman , Michael R. Kearney , Nina Marn , Tânia Sousa , Tiago Domingos , Romain Lavaud , Charlotte Récapet , Tin Klanjšček , Tan T. Yeuw , Gonçalo M. Marques , Laure Pecquerie , Konstadia Lika\",\"doi\":\"10.1016/j.ecolmodel.2024.110869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As sciences mature, they transition from observation and description to explanation and prediction. This transition is associated with qualitative changes in the way quantitative mathematical formulations are constructed and interpreted, resulting in a ‘theory’. Such transitions from phenomenology to theory are happening in biology but the heuristic framework involved is rarely articulated. We here describe how the use of models in research sets model requirements, using Dynamic Energy Budget (DEB) theory to illustrate the more elaborate ones. We first make the distinction between mathematical formulae and models based on their relation to the abstract and real worlds. We then explain how the transition from models to theory affects model construction and parameter estimation, and discuss the concept of parameter estimation-in-context using the database <span>Add_my_Pet</span> on animal energetics. The transition comes with the need to develop auxiliary and meta- theory and to work with multiple datasets, implying constraints for the loss function that is used for parameter estimation. Finally, we discuss the extra requirements for general explanatory models: they need to be explicit on relevant general principles and to be embedded in a wider scientific context. We also discuss how we see theory’s relationship to observation and prediction change in the future as we use it to deal with theoretical and applied problems in biology.</p></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"497 \",\"pages\":\"Article 110869\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304380024002576/pdfft?md5=228e10c1f46a21cabb9e48e43ac61c14&pid=1-s2.0-S0304380024002576-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024002576\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024002576","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
From formulae, via models to theories: Dynamic Energy Budget theory illustrates requirements
As sciences mature, they transition from observation and description to explanation and prediction. This transition is associated with qualitative changes in the way quantitative mathematical formulations are constructed and interpreted, resulting in a ‘theory’. Such transitions from phenomenology to theory are happening in biology but the heuristic framework involved is rarely articulated. We here describe how the use of models in research sets model requirements, using Dynamic Energy Budget (DEB) theory to illustrate the more elaborate ones. We first make the distinction between mathematical formulae and models based on their relation to the abstract and real worlds. We then explain how the transition from models to theory affects model construction and parameter estimation, and discuss the concept of parameter estimation-in-context using the database Add_my_Pet on animal energetics. The transition comes with the need to develop auxiliary and meta- theory and to work with multiple datasets, implying constraints for the loss function that is used for parameter estimation. Finally, we discuss the extra requirements for general explanatory models: they need to be explicit on relevant general principles and to be embedded in a wider scientific context. We also discuss how we see theory’s relationship to observation and prediction change in the future as we use it to deal with theoretical and applied problems in biology.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).