{"title":"派生类别的代理小粗子类别","authors":"Ryo Takahashi","doi":"10.1016/j.jalgebra.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>R</em> be a commutative noetherian ring. Denote by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the bounded derived category of finitely generated <em>R</em>-modules. Extending the notion of a proxy small object of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in the sense of Dwyer, Greenlees, Iyengar and Pollitz, we introduce the notion of a proxy small thick subcategory of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. When <em>R</em> is a locally dominant ring, we give a complete classification of the proxy small thick subcategories of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in terms of pairs of specialization-closed subsets of Spec <em>R</em> and Sing <em>R</em>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proxy small thick subcategories of derived categories\",\"authors\":\"Ryo Takahashi\",\"doi\":\"10.1016/j.jalgebra.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>R</em> be a commutative noetherian ring. Denote by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the bounded derived category of finitely generated <em>R</em>-modules. Extending the notion of a proxy small object of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in the sense of Dwyer, Greenlees, Iyengar and Pollitz, we introduce the notion of a proxy small thick subcategory of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. When <em>R</em> is a locally dominant ring, we give a complete classification of the proxy small thick subcategories of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in terms of pairs of specialization-closed subsets of Spec <em>R</em> and Sing <em>R</em>.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004708\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004708","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 R 是交换诺特环。用 Db(R) 表示有限生成的 R 模块的有界派生范畴。从 Dwyer、Greenlees、Iyengar 和 Pollitz 的意义上扩展了 Db(R) 的代理小对象的概念,我们引入了 Db(R) 的代理小厚子类的概念。当 R 是局部显环时,我们给出了 Db(R) 的代理小厚子类的完整分类,即 Spec R 和 Sing R 的成对特化封闭子集。
Proxy small thick subcategories of derived categories
Let R be a commutative noetherian ring. Denote by the bounded derived category of finitely generated R-modules. Extending the notion of a proxy small object of in the sense of Dwyer, Greenlees, Iyengar and Pollitz, we introduce the notion of a proxy small thick subcategory of . When R is a locally dominant ring, we give a complete classification of the proxy small thick subcategories of in terms of pairs of specialization-closed subsets of Spec R and Sing R.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.