关于适当 k 结构和 Brauer-Severi 品种的绝对分裂局部自由剪切

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Saša Novaković
{"title":"关于适当 k 结构和 Brauer-Severi 品种的绝对分裂局部自由剪切","authors":"Saša Novaković","doi":"10.1016/j.bulsci.2024.103494","DOIUrl":null,"url":null,"abstract":"<div><p>We classify absolutely split vector bundles on proper <em>k</em>-schemes. More precise, we prove that the closed points of the Picard scheme are in one-to-one correspondence with indecomposable absolutely split vector bundles. Furthermore, we apply the obtained results to study the geometry of (generalized) Brauer–Severi varieties.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"197 ","pages":"Article 103494"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000744972400112X/pdfft?md5=9ccf4a9a1b5dc90a9bf41f334c0ecffe&pid=1-s2.0-S000744972400112X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Absolutely split locally free sheaves on proper k-schemes and Brauer–Severi varieties\",\"authors\":\"Saša Novaković\",\"doi\":\"10.1016/j.bulsci.2024.103494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify absolutely split vector bundles on proper <em>k</em>-schemes. More precise, we prove that the closed points of the Picard scheme are in one-to-one correspondence with indecomposable absolutely split vector bundles. Furthermore, we apply the obtained results to study the geometry of (generalized) Brauer–Severi varieties.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"197 \",\"pages\":\"Article 103494\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S000744972400112X/pdfft?md5=9ccf4a9a1b5dc90a9bf41f334c0ecffe&pid=1-s2.0-S000744972400112X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000744972400112X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972400112X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们对适当 k 方案上的绝对分裂向量束进行了分类。更精确地说,我们证明了皮卡尔方案的闭点与不可分解的绝对分裂向量束是一一对应的。此外,我们还将所得结果应用于研究(广义)布劳尔-塞维里(Brauer-Severi)变体的几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolutely split locally free sheaves on proper k-schemes and Brauer–Severi varieties

We classify absolutely split vector bundles on proper k-schemes. More precise, we prove that the closed points of the Picard scheme are in one-to-one correspondence with indecomposable absolutely split vector bundles. Furthermore, we apply the obtained results to study the geometry of (generalized) Brauer–Severi varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信