论特征 2 中受限约旦平面的德林费尔德双倍性

IF 0.7 2区 数学 Q2 MATHEMATICS
Nicolás Andruskiewitsch , Dirceu Bagio , Saradia Della Flora , Daiana Flôres
{"title":"论特征 2 中受限约旦平面的德林费尔德双倍性","authors":"Nicolás Andruskiewitsch ,&nbsp;Dirceu Bagio ,&nbsp;Saradia Della Flora ,&nbsp;Daiana Flôres","doi":"10.1016/j.jpaa.2024.107798","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the restricted Jordan plane in characteristic 2, a finite-dimensional Nichols algebra quotient of the Jordan plane that was introduced by Cibils, Lauve and Witherspoon. We extend results from <span><span>arXiv:2002.02514</span><svg><path></path></svg></span> on the analogous object in odd characteristic. We show that the Drinfeld double of the restricted Jordan plane fits into an exact sequence of Hopf algebras whose kernel is a normal local commutative Hopf subalgebra and the cokernel is the restricted enveloping algebra of a restricted Lie algebra <span><math><mi>m</mi></math></span> of dimension 5. We show that <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is tame and compute explicitly the indecomposable modules. An infinite-dimensional Hopf algebra covering the Drinfeld double of the restricted Jordan plane is introduced. Various quantum Frobenius maps are described.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Drinfeld double of the restricted Jordan plane in characteristic 2\",\"authors\":\"Nicolás Andruskiewitsch ,&nbsp;Dirceu Bagio ,&nbsp;Saradia Della Flora ,&nbsp;Daiana Flôres\",\"doi\":\"10.1016/j.jpaa.2024.107798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the restricted Jordan plane in characteristic 2, a finite-dimensional Nichols algebra quotient of the Jordan plane that was introduced by Cibils, Lauve and Witherspoon. We extend results from <span><span>arXiv:2002.02514</span><svg><path></path></svg></span> on the analogous object in odd characteristic. We show that the Drinfeld double of the restricted Jordan plane fits into an exact sequence of Hopf algebras whose kernel is a normal local commutative Hopf subalgebra and the cokernel is the restricted enveloping algebra of a restricted Lie algebra <span><math><mi>m</mi></math></span> of dimension 5. We show that <span><math><mi>u</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> is tame and compute explicitly the indecomposable modules. An infinite-dimensional Hopf algebra covering the Drinfeld double of the restricted Jordan plane is introduced. Various quantum Frobenius maps are described.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001956\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001956","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是特征 2 中的受限约旦平面,它是由 Cibils、Lauve 和 Witherspoon 引入的约旦平面的有限维尼科尔斯代数商。我们扩展了 arXiv:2002.02514 中关于奇特征中类似对象的结果。我们证明,受限乔丹平面的德林费尔德双重符合霍普夫代数的精确序列,其内核是正常局部交换霍普夫子代数,而协核是维数为 5 的受限列代数 m 的受限包络代数。我们证明 u(m) 是驯服的,并明确计算了不可分解模块。我们引入了一个覆盖受限约旦平面的德林菲尔德双的无穷维霍普夫代数。描述了各种量子弗罗贝尼斯映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Drinfeld double of the restricted Jordan plane in characteristic 2

We consider the restricted Jordan plane in characteristic 2, a finite-dimensional Nichols algebra quotient of the Jordan plane that was introduced by Cibils, Lauve and Witherspoon. We extend results from arXiv:2002.02514 on the analogous object in odd characteristic. We show that the Drinfeld double of the restricted Jordan plane fits into an exact sequence of Hopf algebras whose kernel is a normal local commutative Hopf subalgebra and the cokernel is the restricted enveloping algebra of a restricted Lie algebra m of dimension 5. We show that u(m) is tame and compute explicitly the indecomposable modules. An infinite-dimensional Hopf algebra covering the Drinfeld double of the restricted Jordan plane is introduced. Various quantum Frobenius maps are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信