{"title":"广义劳伦双正交多项式的组合解释所产生的广义施罗德路径","authors":"Mawo Ito","doi":"10.1016/j.disc.2024.114230","DOIUrl":null,"url":null,"abstract":"<div><p>Lattice paths called <em>ℓ</em>-Schröder paths are introduced. They are paths on the upper half-plane consisting of <span><math><mi>ℓ</mi><mo>+</mo><mn>2</mn></math></span> types of steps: <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>ℓ</mi><mo>−</mo><mi>i</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi></math></span>, and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Those paths generalize Schröder paths and some variants, such as <em>m</em>-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that <em>ℓ</em>-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting <em>ℓ</em>-Schröder paths can be factorized in closed forms.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114230"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003613/pdfft?md5=3d23fab95f47d9c48cf5e308a2091300&pid=1-s2.0-S0012365X24003613-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Schröder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials\",\"authors\":\"Mawo Ito\",\"doi\":\"10.1016/j.disc.2024.114230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lattice paths called <em>ℓ</em>-Schröder paths are introduced. They are paths on the upper half-plane consisting of <span><math><mi>ℓ</mi><mo>+</mo><mn>2</mn></math></span> types of steps: <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>ℓ</mi><mo>−</mo><mi>i</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi></math></span>, and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Those paths generalize Schröder paths and some variants, such as <em>m</em>-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that <em>ℓ</em>-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting <em>ℓ</em>-Schröder paths can be factorized in closed forms.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114230\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003613/pdfft?md5=3d23fab95f47d9c48cf5e308a2091300&pid=1-s2.0-S0012365X24003613-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003613\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003613","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized Schröder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials
Lattice paths called ℓ-Schröder paths are introduced. They are paths on the upper half-plane consisting of types of steps: for , and . Those paths generalize Schröder paths and some variants, such as m-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that ℓ-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting ℓ-Schröder paths can be factorized in closed forms.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.