Marcin K. Heljak , Sumeyye Cesur , Elif Ilhan , Wojciech Swieszkowski , Oguzhan Gunduz , Ewa Kijeńska-Gawrońska
{"title":"角膜贴片洗脱抗血管内皮生长因子药物概念的硅学评估","authors":"Marcin K. Heljak , Sumeyye Cesur , Elif Ilhan , Wojciech Swieszkowski , Oguzhan Gunduz , Ewa Kijeńska-Gawrońska","doi":"10.1016/j.ejpb.2024.114494","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a novel approach utilizing a temporary drug-eluting hydrogel corneal patch to prevent neovascularization, alongside a numerical predictive tool for assessing the release and transport kinetics of bevacizumab (BVZ) after the keratoplasty. A key focus was investigating the impact of tear film clearance on the release kinetics and drug transport from the designed corneal patch. The proposed tear drug clearance model incorporates the physiological mechanism of lacrimal flow (tear turnover), distinguishing itself from previous models. Validation against experimental data confirms the model’s robustness, despite limitations such as a 2D axisymmetrical framework and omission of blink frequency and saccadic eye movements potential effects. Analysis highlights the significant influence of lacrimal flow on ocular drug transport, with the corneal patch extending BVZ residence time compared to topical administration. This research sets the stage for exploring multi-layer drug-eluting corneal patches as a promising therapeutic strategy in ocular health.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114494"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003205/pdfft?md5=152eccd17f2b0f67ac858428c27b5d96&pid=1-s2.0-S0939641124003205-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In silico evaluation of corneal patch eluting anti-VEGF agents concept\",\"authors\":\"Marcin K. Heljak , Sumeyye Cesur , Elif Ilhan , Wojciech Swieszkowski , Oguzhan Gunduz , Ewa Kijeńska-Gawrońska\",\"doi\":\"10.1016/j.ejpb.2024.114494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a novel approach utilizing a temporary drug-eluting hydrogel corneal patch to prevent neovascularization, alongside a numerical predictive tool for assessing the release and transport kinetics of bevacizumab (BVZ) after the keratoplasty. A key focus was investigating the impact of tear film clearance on the release kinetics and drug transport from the designed corneal patch. The proposed tear drug clearance model incorporates the physiological mechanism of lacrimal flow (tear turnover), distinguishing itself from previous models. Validation against experimental data confirms the model’s robustness, despite limitations such as a 2D axisymmetrical framework and omission of blink frequency and saccadic eye movements potential effects. Analysis highlights the significant influence of lacrimal flow on ocular drug transport, with the corneal patch extending BVZ residence time compared to topical administration. This research sets the stage for exploring multi-layer drug-eluting corneal patches as a promising therapeutic strategy in ocular health.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"204 \",\"pages\":\"Article 114494\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003205/pdfft?md5=152eccd17f2b0f67ac858428c27b5d96&pid=1-s2.0-S0939641124003205-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003205\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003205","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In silico evaluation of corneal patch eluting anti-VEGF agents concept
This study introduces a novel approach utilizing a temporary drug-eluting hydrogel corneal patch to prevent neovascularization, alongside a numerical predictive tool for assessing the release and transport kinetics of bevacizumab (BVZ) after the keratoplasty. A key focus was investigating the impact of tear film clearance on the release kinetics and drug transport from the designed corneal patch. The proposed tear drug clearance model incorporates the physiological mechanism of lacrimal flow (tear turnover), distinguishing itself from previous models. Validation against experimental data confirms the model’s robustness, despite limitations such as a 2D axisymmetrical framework and omission of blink frequency and saccadic eye movements potential effects. Analysis highlights the significant influence of lacrimal flow on ocular drug transport, with the corneal patch extending BVZ residence time compared to topical administration. This research sets the stage for exploring multi-layer drug-eluting corneal patches as a promising therapeutic strategy in ocular health.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.