{"title":"基于实验的波浪滑翔机海底滑翔机水动力模拟","authors":"","doi":"10.1016/j.apor.2024.104224","DOIUrl":null,"url":null,"abstract":"<div><p>The wave glider is an unmanned surface vehicle propelled by wave energy, consisting of three main components: a surface float, a submarine glider, and a tether. The submarine glider serves as the primary propulsion mechanism, converting the wave-induced motions of the float into forward thrust, which is crucial for the wave glider’s energy absorption efficiency. However, predicting the motion performance of the submarine glider presents a significant challenge due to its complex and unique structure. In this study, we establish a kinematic and dynamic model of the submarine glider’s hydrofoils, considering the elastic effects such as spring stiffness, spring preload, and spring attachment positions. To support this model, wind tunnel tests were conducted to determine the lift and drag coefficients of the submarine glider under various motion states. Utilizing the elastic hydrofoil model and the experimentally obtained lift and drag coefficients, we developed a comprehensive kinematic and dynamic simulation model of the submarine glider under heave excitation forces. To validate the accuracy of this model, performance tests for the submarine glider were designed under different vertical excitation forces , with results compared to simulation outcomes. The findings indicate that the deviation between simulated and experimental outcomes is less than 5%, demonstrating the model’s precision. This accurate simulation capability allows for detailed analysis of the effects of various design parameters on the glider’s performance and lays a solid foundation for high-accuracy motion simulation of the entire wave glider.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental-based hydrodynamic simulation of submarine glider for wave gliders\",\"authors\":\"\",\"doi\":\"10.1016/j.apor.2024.104224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The wave glider is an unmanned surface vehicle propelled by wave energy, consisting of three main components: a surface float, a submarine glider, and a tether. The submarine glider serves as the primary propulsion mechanism, converting the wave-induced motions of the float into forward thrust, which is crucial for the wave glider’s energy absorption efficiency. However, predicting the motion performance of the submarine glider presents a significant challenge due to its complex and unique structure. In this study, we establish a kinematic and dynamic model of the submarine glider’s hydrofoils, considering the elastic effects such as spring stiffness, spring preload, and spring attachment positions. To support this model, wind tunnel tests were conducted to determine the lift and drag coefficients of the submarine glider under various motion states. Utilizing the elastic hydrofoil model and the experimentally obtained lift and drag coefficients, we developed a comprehensive kinematic and dynamic simulation model of the submarine glider under heave excitation forces. To validate the accuracy of this model, performance tests for the submarine glider were designed under different vertical excitation forces , with results compared to simulation outcomes. The findings indicate that the deviation between simulated and experimental outcomes is less than 5%, demonstrating the model’s precision. This accurate simulation capability allows for detailed analysis of the effects of various design parameters on the glider’s performance and lays a solid foundation for high-accuracy motion simulation of the entire wave glider.</p></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003456\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Experimental-based hydrodynamic simulation of submarine glider for wave gliders
The wave glider is an unmanned surface vehicle propelled by wave energy, consisting of three main components: a surface float, a submarine glider, and a tether. The submarine glider serves as the primary propulsion mechanism, converting the wave-induced motions of the float into forward thrust, which is crucial for the wave glider’s energy absorption efficiency. However, predicting the motion performance of the submarine glider presents a significant challenge due to its complex and unique structure. In this study, we establish a kinematic and dynamic model of the submarine glider’s hydrofoils, considering the elastic effects such as spring stiffness, spring preload, and spring attachment positions. To support this model, wind tunnel tests were conducted to determine the lift and drag coefficients of the submarine glider under various motion states. Utilizing the elastic hydrofoil model and the experimentally obtained lift and drag coefficients, we developed a comprehensive kinematic and dynamic simulation model of the submarine glider under heave excitation forces. To validate the accuracy of this model, performance tests for the submarine glider were designed under different vertical excitation forces , with results compared to simulation outcomes. The findings indicate that the deviation between simulated and experimental outcomes is less than 5%, demonstrating the model’s precision. This accurate simulation capability allows for detailed analysis of the effects of various design parameters on the glider’s performance and lays a solid foundation for high-accuracy motion simulation of the entire wave glider.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.