{"title":"天顶和代数范畴","authors":"Jonathan Beardsley, Tyler Lawson","doi":"10.1016/j.aim.2024.109944","DOIUrl":null,"url":null,"abstract":"<div><p>We define a notion of a connectivity structure on an ∞-category, analogous to a <em>t</em>-structure but applicable in unstable contexts—such as spaces, or algebras over an operad. This allows us to generalize notions of n-skeleta, minimal skeleta, and cellular approximation from the category of spaces. For modules over an Eilenberg–Mac Lane spectrum, these are closely related to the notion of projective amplitude.</p><p>We apply these to ring spectra, where they can be detected via the cotangent complex and higher Hochschild homology with coefficients. We show that the spectra <span><math><mi>Y</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of chromatic homotopy theory are minimal skeleta for <span><math><mi>H</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the category of associative ring spectra. Similarly, Ravenel's spectra <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are shown to be minimal skeleta for <em>BP</em> in the same way, which proves that these admit canonical associative algebra structures.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeleta and categories of algebras\",\"authors\":\"Jonathan Beardsley, Tyler Lawson\",\"doi\":\"10.1016/j.aim.2024.109944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We define a notion of a connectivity structure on an ∞-category, analogous to a <em>t</em>-structure but applicable in unstable contexts—such as spaces, or algebras over an operad. This allows us to generalize notions of n-skeleta, minimal skeleta, and cellular approximation from the category of spaces. For modules over an Eilenberg–Mac Lane spectrum, these are closely related to the notion of projective amplitude.</p><p>We apply these to ring spectra, where they can be detected via the cotangent complex and higher Hochschild homology with coefficients. We show that the spectra <span><math><mi>Y</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of chromatic homotopy theory are minimal skeleta for <span><math><mi>H</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the category of associative ring spectra. Similarly, Ravenel's spectra <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are shown to be minimal skeleta for <em>BP</em> in the same way, which proves that these admit canonical associative algebra structures.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004596\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们定义了一个∞类上的连接结构概念,它类似于 t 结构,但适用于不稳定的上下文--如空间或操作数上的代数。这样,我们就可以从空间类别中概括出 n-skeleta、minimal skeleta 和 cellular approximation 等概念。对于艾伦伯格-麦克莱恩谱上的模块,这些概念与投影振幅的概念密切相关。我们将这些概念应用于环谱,通过带系数的余切复数和高霍赫希尔德同调来检测它们。我们证明了色度同调理论的谱 Y(n) 是关联环谱范畴中 HF2 的最小骨架。同样,雷文纳的谱 T(n) 也以同样的方式被证明是 BP 的最小骨架,这证明了这些谱接纳了典型的关联代数结构。
We define a notion of a connectivity structure on an ∞-category, analogous to a t-structure but applicable in unstable contexts—such as spaces, or algebras over an operad. This allows us to generalize notions of n-skeleta, minimal skeleta, and cellular approximation from the category of spaces. For modules over an Eilenberg–Mac Lane spectrum, these are closely related to the notion of projective amplitude.
We apply these to ring spectra, where they can be detected via the cotangent complex and higher Hochschild homology with coefficients. We show that the spectra of chromatic homotopy theory are minimal skeleta for in the category of associative ring spectra. Similarly, Ravenel's spectra are shown to be minimal skeleta for BP in the same way, which proves that these admit canonical associative algebra structures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.