两个 p-adic 对数中线性形式的下界

Pub Date : 2024-08-21 DOI:10.1016/j.jnt.2024.07.012
Kwok Chi Chim
{"title":"两个 p-adic 对数中线性形式的下界","authors":"Kwok Chi Chim","doi":"10.1016/j.jnt.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>We prove explicit lower bounds for linear forms in two <em>p</em>-adic logarithms. More specifically, we establish explicit lower bounds for the <em>p</em>-adic distance between two integral powers of algebraic numbers, that is, <span><math><mo>|</mo><mi>Λ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>|</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> (and corresponding explicit upper bounds for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>), where <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are numbers that are algebraic over <span><math><mi>Q</mi></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are positive rational integers.</p><p>This work is a <em>p</em>-adic analogue of Gouillon's explicit lower bounds in the complex case. Our upper bound for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span> has an explicit constant of reasonable size and the dependence of the bound on <em>B</em> (a quantity depending on <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) is <span><math><mi>log</mi><mo>⁡</mo><mi>B</mi></math></span>, instead of <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>B</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> as in the work of Bugeaud and Laurent in 1996.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001793/pdfft?md5=ccf251a8e8e82101b493968e4e90bf5e&pid=1-s2.0-S0022314X24001793-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lower bounds for linear forms in two p-adic logarithms\",\"authors\":\"Kwok Chi Chim\",\"doi\":\"10.1016/j.jnt.2024.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove explicit lower bounds for linear forms in two <em>p</em>-adic logarithms. More specifically, we establish explicit lower bounds for the <em>p</em>-adic distance between two integral powers of algebraic numbers, that is, <span><math><mo>|</mo><mi>Λ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>|</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> (and corresponding explicit upper bounds for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>), where <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are numbers that are algebraic over <span><math><mi>Q</mi></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are positive rational integers.</p><p>This work is a <em>p</em>-adic analogue of Gouillon's explicit lower bounds in the complex case. Our upper bound for <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span> has an explicit constant of reasonable size and the dependence of the bound on <em>B</em> (a quantity depending on <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) is <span><math><mi>log</mi><mo>⁡</mo><mi>B</mi></math></span>, instead of <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>B</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> as in the work of Bugeaud and Laurent in 1996.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001793/pdfft?md5=ccf251a8e8e82101b493968e4e90bf5e&pid=1-s2.0-S0022314X24001793-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了两个 p-adic 对数中线性形式的显式下界。更具体地说,我们建立了两个代数数积分幂之间的 p-adic 距离的显式下界,即 |Λ|p=|α1b1-α2b2|p(以及 vp(Λ) 的相应显式上界),其中 α1,α2是 Q 上的代数数,b1,b2 是正有理整数。我们的 vp(Λ) 上限有一个合理大小的显式常数,而且上限与 B(取决于 b1 和 b2 的一个量)的关系是 logB,而不是 Bugeaud 和 Laurent 在 1996 年的研究中的 (logB)2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lower bounds for linear forms in two p-adic logarithms

We prove explicit lower bounds for linear forms in two p-adic logarithms. More specifically, we establish explicit lower bounds for the p-adic distance between two integral powers of algebraic numbers, that is, |Λ|p=|α1b1α2b2|p (and corresponding explicit upper bounds for vp(Λ)), where α1,α2 are numbers that are algebraic over Q and b1,b2 are positive rational integers.

This work is a p-adic analogue of Gouillon's explicit lower bounds in the complex case. Our upper bound for vp(Λ) has an explicit constant of reasonable size and the dependence of the bound on B (a quantity depending on b1 and b2) is logB, instead of (logB)2 as in the work of Bugeaud and Laurent in 1996.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信