用于混凝土下水道预测性维护的三维点云数据腐蚀模型

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"用于混凝土下水道预测性维护的三维点云数据腐蚀模型","authors":"","doi":"10.1016/j.autcon.2024.105743","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive maintenance decisions can promote resilient sewers, however, interpretable and accurate corrosion predictions are challenging because of the dynamics of corrosion stages and environmental conditions. In this paper, a 3D point-cloud data-based Bayesian model updating approach is presented to predict the critical parameter evolution of concrete sewer corrosion. The proposed approach adopts a novel distribution-based updating strategy to address the multivariate and asymmetric nature of massive point-cloud data. The effectiveness of the proposed method is investigated using two publicly available sewer corrosion datasets from Perth, Australia and Texas, USA. The Perth case results show that critical parameters after Bayesian updating have the same trends as the in situ monitoring data, which provides interpretability for ultimate decision-making. The Texas case results show that the proposed framework enables more accurate service life predictions than the non-updated Pomeroy model. The proposed approach achieves interpretable and intelligent decision-making, contributing to improved sewer predictive maintenance.</p></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926580524004795/pdfft?md5=7c3e525399f7bfde337375af2261c56a&pid=1-s2.0-S0926580524004795-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D point-cloud data corrosion model for predictive maintenance of concrete sewers\",\"authors\":\"\",\"doi\":\"10.1016/j.autcon.2024.105743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predictive maintenance decisions can promote resilient sewers, however, interpretable and accurate corrosion predictions are challenging because of the dynamics of corrosion stages and environmental conditions. In this paper, a 3D point-cloud data-based Bayesian model updating approach is presented to predict the critical parameter evolution of concrete sewer corrosion. The proposed approach adopts a novel distribution-based updating strategy to address the multivariate and asymmetric nature of massive point-cloud data. The effectiveness of the proposed method is investigated using two publicly available sewer corrosion datasets from Perth, Australia and Texas, USA. The Perth case results show that critical parameters after Bayesian updating have the same trends as the in situ monitoring data, which provides interpretability for ultimate decision-making. The Texas case results show that the proposed framework enables more accurate service life predictions than the non-updated Pomeroy model. The proposed approach achieves interpretable and intelligent decision-making, contributing to improved sewer predictive maintenance.</p></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0926580524004795/pdfft?md5=7c3e525399f7bfde337375af2261c56a&pid=1-s2.0-S0926580524004795-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524004795\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524004795","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

预测性维护决策可以提高下水道的抗腐蚀能力,然而,由于腐蚀阶段和环境条件的动态变化,可解释且准确的腐蚀预测具有挑战性。本文提出了一种基于三维点云数据的贝叶斯模型更新方法,用于预测混凝土下水道腐蚀的关键参数演变。该方法采用了一种新颖的基于分布的更新策略,以解决海量点云数据的多变量和非对称特性。使用来自澳大利亚珀斯和美国德克萨斯州的两个公开下水道腐蚀数据集研究了所提方法的有效性。珀斯案例的结果表明,贝叶斯更新后的关键参数与现场监测数据具有相同的趋势,这为最终决策提供了可解释性。德克萨斯州案例的结果表明,与未更新的波美模型相比,建议的框架能更准确地预测使用寿命。所提出的方法实现了可解释的智能决策,有助于改善下水道的预测性维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D point-cloud data corrosion model for predictive maintenance of concrete sewers

Predictive maintenance decisions can promote resilient sewers, however, interpretable and accurate corrosion predictions are challenging because of the dynamics of corrosion stages and environmental conditions. In this paper, a 3D point-cloud data-based Bayesian model updating approach is presented to predict the critical parameter evolution of concrete sewer corrosion. The proposed approach adopts a novel distribution-based updating strategy to address the multivariate and asymmetric nature of massive point-cloud data. The effectiveness of the proposed method is investigated using two publicly available sewer corrosion datasets from Perth, Australia and Texas, USA. The Perth case results show that critical parameters after Bayesian updating have the same trends as the in situ monitoring data, which provides interpretability for ultimate decision-making. The Texas case results show that the proposed framework enables more accurate service life predictions than the non-updated Pomeroy model. The proposed approach achieves interpretable and intelligent decision-making, contributing to improved sewer predictive maintenance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信