Lujie Cheng , Xin Li , Xiefei Li , Yingmei Wu , Fengping An , Zhang Luo , Fang Geng , Qun Huang , Zhendong Liu , Yuting Tian
{"title":"低温超声波辅助熟制藏香猪肉挥发性的改善机理:基于脂质和蛋白质氧化的差异","authors":"Lujie Cheng , Xin Li , Xiefei Li , Yingmei Wu , Fengping An , Zhang Luo , Fang Geng , Qun Huang , Zhendong Liu , Yuting Tian","doi":"10.1016/j.ultsonch.2024.107060","DOIUrl":null,"url":null,"abstract":"<div><p>Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC–MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"110 ","pages":"Article 107060"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724003080/pdfft?md5=931e4e7486324c861c70dd84b983bf7b&pid=1-s2.0-S1350417724003080-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein\",\"authors\":\"Lujie Cheng , Xin Li , Xiefei Li , Yingmei Wu , Fengping An , Zhang Luo , Fang Geng , Qun Huang , Zhendong Liu , Yuting Tian\",\"doi\":\"10.1016/j.ultsonch.2024.107060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC–MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.</p></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"110 \",\"pages\":\"Article 107060\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003080/pdfft?md5=931e4e7486324c861c70dd84b983bf7b&pid=1-s2.0-S1350417724003080-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein
Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC–MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.