Shuangshuang Liu , Guangqi Xiong , Kaiyin Zhao , Lucen Hao , Yilin Su , Shipeng Zhang , Chi Sun Poon
{"title":"有机添加剂诱导碳化活化剂影响水泥砂浆的机理","authors":"Shuangshuang Liu , Guangqi Xiong , Kaiyin Zhao , Lucen Hao , Yilin Su , Shipeng Zhang , Chi Sun Poon","doi":"10.1016/j.cemconcomp.2024.105744","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the impact of introducing an in-situ activator, produced by carbonating cement particles in an aqueous solution, on the properties of cement mortars through secondary mixing. Two organic additives, ethylenediaminetetraacetic acid (EDTA) and glutamic acid (GLTA), were employed to enhance the leaching of calcium ions during carbonation, thereby improving the carbonation efficiency. A suite of characterization techniques revealed that the presence of organic additives could refine the carbonated particles and influence the morphology. The carbonated activators generated by this process were rich in silica gel and various polymorphic forms of calcium carbonate. These components, serving as fillers and nucleation for cement hydration, significantly accelerated the hydration process of cement mortar and promoted the formation of carboaluminate in the secondary mixing process. This approach effectively decreased the porosity of the cement mortar, refined the pore structure, and enhanced the mechanical strength.</p></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"154 ","pages":"Article 105744"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of organic additives-induced carbonation activators on affecting cement mortars\",\"authors\":\"Shuangshuang Liu , Guangqi Xiong , Kaiyin Zhao , Lucen Hao , Yilin Su , Shipeng Zhang , Chi Sun Poon\",\"doi\":\"10.1016/j.cemconcomp.2024.105744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated the impact of introducing an in-situ activator, produced by carbonating cement particles in an aqueous solution, on the properties of cement mortars through secondary mixing. Two organic additives, ethylenediaminetetraacetic acid (EDTA) and glutamic acid (GLTA), were employed to enhance the leaching of calcium ions during carbonation, thereby improving the carbonation efficiency. A suite of characterization techniques revealed that the presence of organic additives could refine the carbonated particles and influence the morphology. The carbonated activators generated by this process were rich in silica gel and various polymorphic forms of calcium carbonate. These components, serving as fillers and nucleation for cement hydration, significantly accelerated the hydration process of cement mortar and promoted the formation of carboaluminate in the secondary mixing process. This approach effectively decreased the porosity of the cement mortar, refined the pore structure, and enhanced the mechanical strength.</p></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"154 \",\"pages\":\"Article 105744\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524003172\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003172","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanism of organic additives-induced carbonation activators on affecting cement mortars
In this study, we investigated the impact of introducing an in-situ activator, produced by carbonating cement particles in an aqueous solution, on the properties of cement mortars through secondary mixing. Two organic additives, ethylenediaminetetraacetic acid (EDTA) and glutamic acid (GLTA), were employed to enhance the leaching of calcium ions during carbonation, thereby improving the carbonation efficiency. A suite of characterization techniques revealed that the presence of organic additives could refine the carbonated particles and influence the morphology. The carbonated activators generated by this process were rich in silica gel and various polymorphic forms of calcium carbonate. These components, serving as fillers and nucleation for cement hydration, significantly accelerated the hydration process of cement mortar and promoted the formation of carboaluminate in the secondary mixing process. This approach effectively decreased the porosity of the cement mortar, refined the pore structure, and enhanced the mechanical strength.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.