具有最大逆和 indeg 指数的大树没有阶数为 2 或 3 的顶点

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yuehan Wu , Chengxi Hong , Peifang Fu , Wenshui Lin
{"title":"具有最大逆和 indeg 指数的大树没有阶数为 2 或 3 的顶点","authors":"Yuehan Wu ,&nbsp;Chengxi Hong ,&nbsp;Peifang Fu ,&nbsp;Wenshui Lin","doi":"10.1016/j.dam.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>The inverse sum indeg (<span><math><mrow><mi>I</mi><mi>S</mi><mi>I</mi></mrow></math></span>) index has attracted more and more attentions, because of its significant applications in chemistry. A basic problem in the study of this topological index is the characterization trees with maximal <span><math><mrow><mi>I</mi><mi>S</mi><mi>I</mi></mrow></math></span> value. Let <span><math><mi>T</mi></math></span> be such a tree of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>20</mn></mrow></math></span>. Recently, Lin et al. (2022) claimed that <span><math><mi>T</mi></math></span> has no vertices of degree 2. However, errors were found in their proofs. Since this result is quite important, we give a correction to the proof. Furthermore, we extend the result by proving that <span><math><mi>T</mi></math></span> has no vertices of degree 2 or 3 if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>58</mn></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 131-138"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003949/pdfft?md5=6f31123f073d46ec4f365b5d99d2a66f&pid=1-s2.0-S0166218X24003949-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Large trees with maximal inverse sum indeg index have no vertices of degree 2 or 3\",\"authors\":\"Yuehan Wu ,&nbsp;Chengxi Hong ,&nbsp;Peifang Fu ,&nbsp;Wenshui Lin\",\"doi\":\"10.1016/j.dam.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The inverse sum indeg (<span><math><mrow><mi>I</mi><mi>S</mi><mi>I</mi></mrow></math></span>) index has attracted more and more attentions, because of its significant applications in chemistry. A basic problem in the study of this topological index is the characterization trees with maximal <span><math><mrow><mi>I</mi><mi>S</mi><mi>I</mi></mrow></math></span> value. Let <span><math><mi>T</mi></math></span> be such a tree of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>20</mn></mrow></math></span>. Recently, Lin et al. (2022) claimed that <span><math><mi>T</mi></math></span> has no vertices of degree 2. However, errors were found in their proofs. Since this result is quite important, we give a correction to the proof. Furthermore, we extend the result by proving that <span><math><mi>T</mi></math></span> has no vertices of degree 2 or 3 if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>58</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 131-138\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003949/pdfft?md5=6f31123f073d46ec4f365b5d99d2a66f&pid=1-s2.0-S0166218X24003949-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003949\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003949","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于其在化学中的重要应用,逆和指数(ISI)受到越来越多的关注。研究该拓扑指数的一个基本问题是找出 ISI 值最大的树的特征。设 T 是这样一棵阶数 n≥20 的树。最近,Lin 等人(2022 年)声称 T 没有阶数为 2 的顶点。由于这一结果相当重要,我们对证明进行了修正。此外,我们还扩展了这一结果,证明如果 n≥58 则 T 没有阶数为 2 或 3 的顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large trees with maximal inverse sum indeg index have no vertices of degree 2 or 3

The inverse sum indeg (ISI) index has attracted more and more attentions, because of its significant applications in chemistry. A basic problem in the study of this topological index is the characterization trees with maximal ISI value. Let T be such a tree of order n20. Recently, Lin et al. (2022) claimed that T has no vertices of degree 2. However, errors were found in their proofs. Since this result is quite important, we give a correction to the proof. Furthermore, we extend the result by proving that T has no vertices of degree 2 or 3 if n58.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信