{"title":"具有自由边界和径向对称性的高维 Fisher-KPP 非局部扩散方程,第 2 部分:锐利估计","authors":"Yihong Du, Wenjie Ni","doi":"10.1016/j.jfa.2024.110649","DOIUrl":null,"url":null,"abstract":"<div><p>This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. In Part 1 <span><span>[19]</span></span>, we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></math></span> such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is determined by an associated semi-wave problem established in <span><span>[15]</span></span>. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> for <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≫</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case <span><span>[18]</span></span> when <em>β</em> crosses the value <span><math><mi>N</mi><mo>+</mo><mn>2</mn></math></span>. More precisely, (a) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, we show that for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>β</mi><mo>−</mo><mi>N</mi><mo>)</mo></mrow></msup></math></span> if <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>t</mi><mi>ln</mi><mo></mo><mi>t</mi></math></span> if <span><math><mi>β</mi><mo>=</mo><mi>N</mi><mo>+</mo><mn>1</mn></math></span>, which is of the same pattern as in dimension one, namely we recover the result in <span><span>[18]</span></span> by letting <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> in the above statements; (b) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, the front has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>β</mi><mo>)</mo></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>t</mi><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and our results here on the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are again of the same pattern as in dimension one; (c) when <span><math><mi>β</mi><mo>></mo><mi>N</mi><mo>+</mo><mn>2</mn></math></span>, the front still has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but a significant change happens to the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> between <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>: for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>ln</mi><mo></mo><mi>t</mi></math></span> when <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, but <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mn>1</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110649"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, part 2: Sharp estimates\",\"authors\":\"Yihong Du, Wenjie Ni\",\"doi\":\"10.1016/j.jfa.2024.110649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. In Part 1 <span><span>[19]</span></span>, we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></math></span> such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is determined by an associated semi-wave problem established in <span><span>[15]</span></span>. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> for <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≫</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case <span><span>[18]</span></span> when <em>β</em> crosses the value <span><math><mi>N</mi><mo>+</mo><mn>2</mn></math></span>. More precisely, (a) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, we show that for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>β</mi><mo>−</mo><mi>N</mi><mo>)</mo></mrow></msup></math></span> if <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>t</mi><mi>ln</mi><mo></mo><mi>t</mi></math></span> if <span><math><mi>β</mi><mo>=</mo><mi>N</mi><mo>+</mo><mn>1</mn></math></span>, which is of the same pattern as in dimension one, namely we recover the result in <span><span>[18]</span></span> by letting <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> in the above statements; (b) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, the front has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>β</mi><mo>)</mo></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>t</mi><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and our results here on the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are again of the same pattern as in dimension one; (c) when <span><math><mi>β</mi><mo>></mo><mi>N</mi><mo>+</mo><mn>2</mn></math></span>, the front still has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but a significant change happens to the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> between <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>: for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>ln</mi><mo></mo><mi>t</mi></math></span> when <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, but <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mn>1</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 12\",\"pages\":\"Article 110649\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003379\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003379","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, part 2: Sharp estimates
This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary . In Part 1 [19], we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed is determined by an associated semi-wave problem established in [15]. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying for in . Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case [18] when β crosses the value . More precisely, (a) when , we show that for , if , and if , which is of the same pattern as in dimension one, namely we recover the result in [18] by letting in the above statements; (b) when , the front has a finite spreading speed in the sense that , and our results here on the order of shift are again of the same pattern as in dimension one; (c) when , the front still has a finite spreading speed , but a significant change happens to the order of shift between and : for , when , but when .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis