具有自由边界和径向对称性的高维 Fisher-KPP 非局部扩散方程,第 2 部分:锐利估计

IF 1.7 2区 数学 Q1 MATHEMATICS
Yihong Du, Wenjie Ni
{"title":"具有自由边界和径向对称性的高维 Fisher-KPP 非局部扩散方程,第 2 部分:锐利估计","authors":"Yihong Du,&nbsp;Wenjie Ni","doi":"10.1016/j.jfa.2024.110649","DOIUrl":null,"url":null,"abstract":"<div><p>This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. In Part 1 <span><span>[19]</span></span>, we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></math></span> such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is determined by an associated semi-wave problem established in <span><span>[15]</span></span>. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> for <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≫</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case <span><span>[18]</span></span> when <em>β</em> crosses the value <span><math><mi>N</mi><mo>+</mo><mn>2</mn></math></span>. More precisely, (a) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, we show that for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>β</mi><mo>−</mo><mi>N</mi><mo>)</mo></mrow></msup></math></span> if <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>t</mi><mi>ln</mi><mo>⁡</mo><mi>t</mi></math></span> if <span><math><mi>β</mi><mo>=</mo><mi>N</mi><mo>+</mo><mn>1</mn></math></span>, which is of the same pattern as in dimension one, namely we recover the result in <span><span>[18]</span></span> by letting <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> in the above statements; (b) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, the front has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>β</mi><mo>)</mo></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>t</mi><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and our results here on the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are again of the same pattern as in dimension one; (c) when <span><math><mi>β</mi><mo>&gt;</mo><mi>N</mi><mo>+</mo><mn>2</mn></math></span>, the front still has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but a significant change happens to the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> between <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>: for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>ln</mi><mo>⁡</mo><mi>t</mi></math></span> when <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, but <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mn>1</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, part 2: Sharp estimates\",\"authors\":\"Yihong Du,&nbsp;Wenjie Ni\",\"doi\":\"10.1016/j.jfa.2024.110649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. In Part 1 <span><span>[19]</span></span>, we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo></math></span> such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is determined by an associated semi-wave problem established in <span><span>[15]</span></span>. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying <span><math><mi>J</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> for <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≫</mo><mn>1</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case <span><span>[18]</span></span> when <em>β</em> crosses the value <span><math><mi>N</mi><mo>+</mo><mn>2</mn></math></span>. More precisely, (a) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, we show that for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>β</mi><mo>−</mo><mi>N</mi><mo>)</mo></mrow></msup></math></span> if <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>,</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>t</mi><mi>ln</mi><mo>⁡</mo><mi>t</mi></math></span> if <span><math><mi>β</mi><mo>=</mo><mi>N</mi><mo>+</mo><mn>1</mn></math></span>, which is of the same pattern as in dimension one, namely we recover the result in <span><span>[18]</span></span> by letting <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span> in the above statements; (b) when <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, the front has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>β</mi><mo>)</mo></math></span> in the sense that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>t</mi><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and our results here on the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are again of the same pattern as in dimension one; (c) when <span><math><mi>β</mi><mo>&gt;</mo><mi>N</mi><mo>+</mo><mn>2</mn></math></span>, the front still has a finite spreading speed <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, but a significant change happens to the order of shift <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> between <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>: for <span><math><mi>t</mi><mo>≫</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>ln</mi><mo>⁡</mo><mi>t</mi></math></span> when <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, but <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>t</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mn>1</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003379\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003379","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是两部分系列文章的第二部分,致力于深入理解自由边界 |x|=h(t) 的辐射对称 Fisher-KPP 非局部扩散方程的动力学行为。在第一部分[19]中,我们证明了该问题的长时动力学特征是扩散-消失二分法,扩散核 J(|x|) 存在一个阈值条件,当该条件不满足时,扩散速度为∞;当该条件满足时,有限扩散速度 c0 由[15]中建立的相关半波问题决定。在第 2 部分中,我们将重点研究一些自然类核函数,包括 RN 中满足 J(|x|)∼|x|-β for |x|≫1 的核函数,从而获得对传播曲线更精确的描述。当 β 越过 N+2 值时,我们对此类核的结果显示出与一维情况下[18]所表现出的行为模式的惊人差异。更确切地说,(a) 当 β∈(N,N+1]时,我们证明对于 t≫1,如果 β∈(N,N+1),则 h(t)∼t1/(β-N),如果 β=N+1 则 h(t)∼tlnt,这与一维情况下的模式相同,即我们通过在上述陈述中让 N=1 恢复了 [18] 中的结果;(b) 当 β∈(N+1,N+2]时,前沿有一个有限的扩散速度 c0=c0(β),即 limt→∞h(t)/t=c0;(c) 当 β>N+2 时,前沿仍具有有限的扩散速度 c0,但在 N≥2 与 N=1 之间,位移 c0t-h(t) 的阶次发生了显著变化:对于 t≫1,当 N≥2 时,c0t-h(t)∼lnt,但当 N=1 时,c0t-h(t)∼1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, part 2: Sharp estimates

This is the second part of a two-part series devoted to an in depth understanding of the dynamical behaviour of the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary |x|=h(t). In Part 1 [19], we have shown that the long-time dynamics of this problem is characterised by a spreading-vanishing dichotomy, and there exists a threshold condition on the diffusion kernel J(|x|) such that the spreading speed is ∞ when this condition is not satisfied, and when it is satisfied, the finite spreading speed c0 is determined by an associated semi-wave problem established in [15]. In Part 2 here, we obtain more precise description of the spreading profile by focusing on some natural classes of kernel functions, including those satisfying J(|x|)|x|β for |x|1 in RN. Our results for such kernels reveal a striking difference of behaviour from the pattern exhibited in the one dimension case [18] when β crosses the value N+2. More precisely, (a) when β(N,N+1], we show that for t1, h(t)t1/(βN) if β(N,N+1), and h(t)tlnt if β=N+1, which is of the same pattern as in dimension one, namely we recover the result in [18] by letting N=1 in the above statements; (b) when β(N+1,N+2], the front has a finite spreading speed c0=c0(β) in the sense that limth(t)/t=c0, and our results here on the order of shift c0th(t) are again of the same pattern as in dimension one; (c) when β>N+2, the front still has a finite spreading speed c0, but a significant change happens to the order of shift c0th(t) between N2 and N=1: for t1, c0th(t)lnt when N2, but c0th(t)1 when N=1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信