Carme Cascante , Joan Fàbrega , Daniel Pascuas , José Ángel Peláez
{"title":"关于有界伏特拉算子符号空间的基性性质","authors":"Carme Cascante , Joan Fàbrega , Daniel Pascuas , José Ángel Peláez","doi":"10.1016/j.jfa.2024.110658","DOIUrl":null,"url":null,"abstract":"<div><p>In <span><span>[1]</span></span> it is shown that the Bloch space <span><math><mi>B</mi></math></span> in the unit disc has the following radicality property: if an analytic function <em>g</em> satisfies that <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><mi>B</mi></math></span>, then <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>∈</mo><mi>B</mi></math></span>, for all <span><math><mi>m</mi><mo>≤</mo><mi>n</mi></math></span>. Since <span><math><mi>B</mi></math></span> coincides with the space <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> of analytic symbols <em>g</em> such that the Volterra-type operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>z</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ζ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>ζ</mi></math></span> is bounded on the classical weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>, the radicality property was used to study the composition of paraproducts <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mi>g</mi></math></span> on <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. Motivated by this fact, we prove that <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> also has the radicality property, for any radial weight <em>ω</em>. Unlike the classical case, the lack of a precise description of <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> for a general radial weight, induces us to prove the radicality property for <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> from precise norm-operator results for compositions of analytic paraproducts.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002212362400346X/pdfft?md5=432f79852fe43e5d19c78c51c3225a0e&pid=1-s2.0-S002212362400346X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the radicality property for spaces of symbols of bounded Volterra operators\",\"authors\":\"Carme Cascante , Joan Fàbrega , Daniel Pascuas , José Ángel Peláez\",\"doi\":\"10.1016/j.jfa.2024.110658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In <span><span>[1]</span></span> it is shown that the Bloch space <span><math><mi>B</mi></math></span> in the unit disc has the following radicality property: if an analytic function <em>g</em> satisfies that <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∈</mo><mi>B</mi></math></span>, then <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>∈</mo><mi>B</mi></math></span>, for all <span><math><mi>m</mi><mo>≤</mo><mi>n</mi></math></span>. Since <span><math><mi>B</mi></math></span> coincides with the space <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> of analytic symbols <em>g</em> such that the Volterra-type operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>z</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ζ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>ζ</mi></math></span> is bounded on the classical weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>, the radicality property was used to study the composition of paraproducts <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>f</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mi>g</mi></math></span> on <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. Motivated by this fact, we prove that <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> also has the radicality property, for any radial weight <em>ω</em>. Unlike the classical case, the lack of a precise description of <span><math><mi>T</mi><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>)</mo></math></span> for a general radial weight, induces us to prove the radicality property for <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> from precise norm-operator results for compositions of analytic paraproducts.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002212362400346X/pdfft?md5=432f79852fe43e5d19c78c51c3225a0e&pid=1-s2.0-S002212362400346X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400346X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400346X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
文献[1]指出,单位圆盘中的布洛赫空间 B 具有如下基性性质:若解析函数 g 满足 gn∈B,则 gm∈B,对于所有 m≤n。由于 B 与分析符号 g 的空间 T(Aαp)重合,使得 Volterra 型算子 Tgf(z)=∫0zf(ζ)g′(ζ)dζ 在经典加权伯格曼空间 Aαp 上是有界的,因此基性性质被用来研究 Aαp 上的准积 Tg 和 Sgf=Tfg 的组成。受这一事实的启发,我们证明 T(Aωp) 对于任意径向权重 ω 也具有基性性质。与经典情形不同的是,由于缺乏对一般径向权重 T(Aωp) 的精确描述,我们不得不从解析旁积组合的精确规范操作结果出发,证明 Aωp 的激元性质。
On the radicality property for spaces of symbols of bounded Volterra operators
In [1] it is shown that the Bloch space in the unit disc has the following radicality property: if an analytic function g satisfies that , then , for all . Since coincides with the space of analytic symbols g such that the Volterra-type operator is bounded on the classical weighted Bergman space , the radicality property was used to study the composition of paraproducts and on . Motivated by this fact, we prove that also has the radicality property, for any radial weight ω. Unlike the classical case, the lack of a precise description of for a general radial weight, induces us to prove the radicality property for from precise norm-operator results for compositions of analytic paraproducts.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis